

Eppendorf – In touch with life®

Hamburg, Germany

November 2nd 2017

- Fundamentals of Pipetting
- Avoiding Contamination Best Practice
- Pipetting Techniques in Cell Culture
- From Cell Seeding to Cell Banking

Contents

Pipetting: An Every Day Task?

- Many different types of
 - Applications
 - Liquids
- So ordinary
- Highest impact of all techniques

Fundamentals of Pipetting

eppendorf

Choice of Pipetting Tool

Liquid Handling Systems

Fundamentals of Pipetting

eppendorf

Liquid Handling Systems

- Device + tip = System
- Tip according to application

Liquid Categories in Cell Culture

Viscous & dense: Glycerol, DMSO

High vapor pressure: Ethanol

Poll Question 1:

Which pipetting instruments do you use for cell culture? (Select any that apply)

- Manual and/or electronic dispenser
- Manual and/or electronic air-cushion pipettes
- Electronic pipette controller
- Classic pipette controller (Peleus ball)

Air-Cushion vs. Positive Displacement

Positive displacement

= Dispenser

- Unaffected by physical properties of liquid
- Suitable for "problematic" liquids
- Contamination free

- Fundamentals of Pipetting
- Avoiding Contamination Best Practice
- Pipetting Techniques in Cell Culture
- From Cell Seeding to Cell Banking

Contents

Poll Question 2:

Have you ever had any problems with contamination in your cell culture lab? (Select one answer)

- o Never
- o Rarely
- o Sometimes
- On a regular basis

Types of Contamination

Microbial contaminants

- Fungi and yeast
- Bacteria
 - Mycoplasma

CHO cells (left) and HL60 cells (right) contaminated with bacteria

Eukaryotic contaminants

 Cross-contaminated and misidentified cell lines
15-30% worldwide

Consequences of Contamination

Loss of time

When you have to repeat experiments

Increase in cost

• For materials, reagents, etc.

Loss of reproducibility

Contaminated vs. non-contaminated cells

Loss of significance

• When working with misidentified or cross-contaminated cell lines

Avoiding contamination is much easier than dealing with it.

Maintaining a Sterile Environment

- Preventive hygiene
- Personal protective equipment
- Being organized inside the biosafety cabinet
- Aseptic handling
- Pipetting techniques

It's in Your Hands

Your hands are a major source of germ-transfer

- Wash hands before you start working
 - Water + detergents remove particles
 - Disinfectants inactivate microorganisms
- Disinfect gloves <u>sufficiently</u> and <u>repeatedly</u>
 - Select a gloves model covering the wrist

Handling Pipettes

Have a dedicated set of pipettes and tips in the cell culture lab

- Disinfect pipettes and tip boxes thoroughly before each use in the biosafety cabinet
 - Prefer wipe disinfection over spray disinfection
- Regularly disassemble pipettes to clean the inside
 - If possible use autoclavable pipettes
- Avoid moving your hands over open vessels

The Place of Action

eppendorf

- Fundamentals of Pipetting
- Avoiding Contamination Best Practice
- Pipetting Techniques in Cell Culture
- From Cell Seeding to Cell Banking

Contents

What is Important in Cell Culture.....

Aerosols

- An effective filter tip protects your pipette while working
 - Protects pipette from contamination
 - Protects culture from cross contamination

eppendorf

Contamination-free with positive displacement system

Filter Tips

ep Dualfilter T.I.P.S.®

Aerosols

- Mixing by gentle rolling rather than vigorous shaking
- Pipetting directly into a liquid or onto a surface to avoid bubbling and splashing
- Placing containers very close to each other when transferring liquids between them
- Slowly removing tube caps or stoppers

Pipetting Tool

Pipetting Tool

eppendorf

Large Volumes

Do

> 45° angle

Don't

> Over flask or dish

Small Volumes

Small volumes

- > Assays
- > Freezing
- > Compound adding

Pipette	< 20 µL	> 20 µL
	low immersion depth	a little deeper

Poll Question 3: Do you use a Dispenser for small volumes? (Select one answer)

- o Yes
- **No**
- I am not sure how to work with these devices

Small Volumes Dispensing ↓

Do

- > 45° angle
- > Tilt the filled tip against the vessel wall
- > Perform blow-out

Don't

> Upright

> Avoid moving hands over plate

Small Volumes with a Dispenser

Do: Aspiration 1

- > Any angle (precision unaffected)
- > Aspirate at any depth

Do: Dispensing \downarrow

- > 45° angle
- > Rest tip on wall of the vessel , or free jet

- Fundamentals of Pipetting
- Avoiding Contamination Best Practice
- Pipetting Techniques in Cell Culture
- From Cell Seeding to Cell Banking

Contents

Cell Seeding is the 1st Step of an Experiment

Seeding Cells

Filling a plate or multiple dishes is time consuming

- Cell sedimentation in the tube is quite fast
- The longer the seeding process, the higher the decrease in cell number

Subsequent pipetting increases the risk of air bubbles

- Culture medium tends to foam
- Air bubbles can hinder cell attachment
- In addition: harsh and fast pipetting can create shear stress

eppendorf

Pipetting can affect Assay Results

- No mixing between rows
- Different aspiration angles and heights
- Mixing before pipetting each row
- Upright and constant aspiration height

Source: InCelligence

From Cell Seeding to Cell Banking

Applying Assay Reagents

Multichannel

Dispenser

Cryopreservation of Cells

Challenge

Establishing frozen cell stocks of high quality by minimizing stress factors during freezing and thawing

Detailed Problem to the

- Cryoprotectants (e.g. DMSO) in liquid media are harmful to the cells
- Freshly thawed cells are very sensitive to shear forces

Possible Solutions

- Reduce the time that the cells are exposed to DMSO in liquid media
- Avoid harsh pipetting and don't pipette against vessel walls

Time is a Critical Factor

Freezing of cells

- From resuspension in freeze medium to cooling
 - Work quick but don ´t get hectic
- Cooling down
 - Slow cooling rate (1 °C/min) to avoid the formation of ice crystals

Thawing of cells

- From thawing to dilution of cryopretectant
 - As **rapidly** as possible (minimized exposure to cryprotectant)
- Freshly thawed cells are very sensitive to shear force
 - Avoid harsh and fast pipetting

eppendorf

Cell Banking is your Backup System

Some general remarks...

- Make sure that you don't freeze contaminated cells
 - Test for mycoplasma
 - Authenticate cell lines
 - Filter tips for enhanced safety
 - Antibiotics can mask a contamination
- Work with a two-stage cell banking system
 - Master stock and working stock from early passaged cells
- Keep detailed and current records of your cell stocks

Summary

eppendorf

Pipetting in Cell Culture

- Repeated mixing of cells
- Calibrate regularly

Multichannel pipettes or dispenser for plates

- **Dispenser** for problematic liquids
- Don't work with too many samples at a time

Poll Question 4: How do you rate the content of this webinar? (Select one answer)

- \circ Very good
- o Good
- o Okay
- o **Poor**

www.eppendorf.com/cellexperts

www.eppendorf.com/pipetting

Let us help to optimize your work!

Thank you

Eppendorf[®], the Eppendorf logo, Eppendorf Reference[®], Combitips advanced[®], ep Dualfilter T.I.P.S.[®], Multipette[®], ep*Motiorl*[®], Easypet[®] 3 and Eppendorf Research[®] are registered trademarks of Eppendorf AG, Germany. Galaxy[®] is a registered trademark of Eppendorf Inc., USA. New Brunswick[™] is a trademark of Eppendorf AG, Germany. U.S. Design Patents are listed on <u>www.eppendorf.com/ip</u>. All rights reserved, including graphics and images. Copyright © 2017 by Eppendorf AG.