epMotion® 5075
with integrated PC and epBlue™

Operating manual
epBlue Version 20

Register your instrument!
www.eppendorf.com/myeppendorf
Table of contents

1 Operating instructions ... 7
1.1 Using this manual ... 7
1.2 Danger symbols and danger levels .. 7
1.2.1 Hazard icons ... 7
1.2.2 Degrees of danger ... 7
1.3 Symbols used ... 7
1.4 Abbreviations used ... 8
1.5 Glossary ... 8
1.6 Change history ... 10

2 Product description ... 11
2.1 Main illustration ... 11
2.2 Delivery package ... 12
2.3 Features ... 13
2.3.1 Principle of operation .. 13
2.4 Overview of hardware and labware ... 14
2.4.1 Hardware ... 14
2.4.2 Labware ... 22
2.4.3 Important volume terms for tubes and wells 25

3 Safety ... 30
3.1 Intended use ... 30
3.2 Information on product liability ... 30
3.3 Warnings for intended use .. 30
3.4 Warning symbols and danger devices on the device 33

4 Installation ... 34

5 Operation ... 35
5.1 First steps .. 35
5.1.1 Check correct installation .. 35
5.1.2 Creating the first user account ... 35
5.2 Placing labware on the worktable .. 38
5.2.1 Placing the gripper and gripper holder 39
5.2.2 Manually filling the vacuum unit (epMotion 5075 VAC) 40
5.2.3 Position labware .. 41
5.3 Starting and exiting epBlue ... 42
5.3.1 Start epBlue and log in with your user account 42
5.3.2 Logging out or exiting epBlue ... 43
5.3.3 General information on working with ID tracking 44
5.4 The Home tab .. 46
5.4.1 Overview of the Home tab .. 46
5.4.2 Open recent application .. 47
5.4.3 Open and manage barcode ID lists 48
epMotion® 5075 with integrated PC and epBlue™ — Operating manual

7 Troubleshooting
7.1 Error search
7.2 General errors
7.2.1 Read error of the optical sensor
7.2.2 Dispensing error
7.3 Error messages

8 Maintenance
8.1 Service
8.1.1 Replacing the sealing rings of the eight-channel dispensing tool
8.1.2 Replacing the seals of the vacuum unit
8.1.3 Replace the sealing mat of the Vac Lid
8.1.4 Maintaining the dispensing tools
8.1.5 Maintaining the gripper
8.1.6 Maintaining the dispensing tools
8.1.7 Replacing the seals of the vacuum unit
8.1.8 Cleaning the thermoadapter, thermoblock and thermorack
8.1.9 ReservoirRack modules
8.1.10 Racks for individual tubes
8.1.11 Reservoirs
8.1.12 epT.I.P.S. Motion pipette tips
8.1.13 Gripper
8.1.14 Dispensing tools
8.2 Cleaning
8.2.1 Cleaning the worktable
8.2.2 Cleaning the work surface adapter
8.2.3 Cleaning the dispensing tools
8.2.4 Cleaning the gripper
8.2.5 Cleaning the vacuum unit
8.2.6 Cleaning the thermomixer
8.2.7 Cleaning the barcode reader
8.2.8 Cleaning the thermoadapter, thermoblock and thermorack
8.2.9 Cleaning the Vac Lid / Vac Thermo Lid
8.2.10 Autoclave hardware and labware
8.3 Decontamination before shipment

9 Technical data
9.1 Power supply
9.2 Ambient conditions
9.3 Weight/dimensions
9.4 Interfaces
9.5 Dispensing Tools
9.6 Additional specifications
9.6.1 Barcode reader
9.6.2 Noise level
9.6.3 Optical sensor
9.6.4 Carrier
9.6.5 Gripper
9.6.6 Vacuum unit
9.6.7 Thermomixer
9.6.8 Thermal module
9.6.9 Vac Thermo lid

10 Ordering information
10.1 Accessories
10.1.1 Automated pipetting system epMotion 5075
10.1.2 Dispensing tools
10.1.3 Gripper
10.1.4 Thermal module
10.1.5 Accessories for nucleic acid purification
10.1.6 epT.I.P.S. Motion pipette tips
10.1.7 Reservoirs
10.1.8 Racks for individual tubes
10.1.9 ReservoirRack modules
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Transport, storage and disposal</td>
<td>187</td>
</tr>
<tr>
<td>11.1 Shut down</td>
<td>187</td>
</tr>
<tr>
<td>11.2 Installation after transport</td>
<td>187</td>
</tr>
<tr>
<td>11.3 Disposal</td>
<td>188</td>
</tr>
<tr>
<td>12 Appendix A: Hardware</td>
<td>189</td>
</tr>
<tr>
<td>12.1 Labware</td>
<td>189</td>
</tr>
<tr>
<td>12.1.1 Introduction</td>
<td>189</td>
</tr>
<tr>
<td>12.1.2 Overview of labware</td>
<td>190</td>
</tr>
<tr>
<td>12.1.3 Abbreviations used</td>
<td>205</td>
</tr>
<tr>
<td>12.1.4 Labware definitions</td>
<td>206</td>
</tr>
<tr>
<td>12.1.5 Compile your own labware combinations</td>
<td>207</td>
</tr>
<tr>
<td>12.2 Tools (dispensing tools)</td>
<td>208</td>
</tr>
<tr>
<td>12.3 Thermal module</td>
<td>209</td>
</tr>
<tr>
<td>12.4 Optical sensor</td>
<td>210</td>
</tr>
<tr>
<td>12.4.1 Function</td>
<td>210</td>
</tr>
<tr>
<td>12.4.2 Detection version 1: detecting liquid surfaces</td>
<td>212</td>
</tr>
<tr>
<td>12.4.3 Detection variant 2: Tip detection</td>
<td>214</td>
</tr>
<tr>
<td>12.4.4 Detection variant 3: Location detection</td>
<td>214</td>
</tr>
<tr>
<td>12.4.5 Detection limits</td>
<td>215</td>
</tr>
<tr>
<td>13 Appendix B: Software</td>
<td>216</td>
</tr>
<tr>
<td>13.1 Commands, parameters, options</td>
<td>216</td>
</tr>
<tr>
<td>13.1.1 Number of Samples</td>
<td>216</td>
</tr>
<tr>
<td>13.1.2 Sample Transfer</td>
<td>218</td>
</tr>
<tr>
<td>13.1.3 Reagent Transfer</td>
<td>229</td>
</tr>
<tr>
<td>13.1.4 Dilute</td>
<td>230</td>
</tr>
<tr>
<td>13.1.5 Pool</td>
<td>233</td>
</tr>
<tr>
<td>13.1.6 Pool One destination</td>
<td>234</td>
</tr>
<tr>
<td>13.1.7 Mix</td>
<td>236</td>
</tr>
<tr>
<td>13.1.8 Transport</td>
<td>238</td>
</tr>
<tr>
<td>13.1.9 Temperature (only epMotion 5075 with thermal module)</td>
<td>238</td>
</tr>
<tr>
<td>13.1.10 Thermomixer (only epMotion 5075 with thermomixer)</td>
<td>239</td>
</tr>
<tr>
<td>13.1.11 Vacuum (only epMotion 5075 VAC)</td>
<td>240</td>
</tr>
<tr>
<td>13.1.12 Wait</td>
<td>241</td>
</tr>
<tr>
<td>13.1.13 Comment</td>
<td>241</td>
</tr>
<tr>
<td>13.1.14 User Intervention</td>
<td>242</td>
</tr>
<tr>
<td>13.2 Importing commands from a CSV file</td>
<td>242</td>
</tr>
<tr>
<td>13.2.1 Creating a CSV file for import</td>
<td>243</td>
</tr>
<tr>
<td>13.2.2 Importing a CSV file</td>
<td>244</td>
</tr>
<tr>
<td>13.3 Importing and exporting labware combinations</td>
<td>247</td>
</tr>
<tr>
<td>13.3.1 Importing labware combinations</td>
<td>247</td>
</tr>
<tr>
<td>13.3.2 Export labware combinations</td>
<td>248</td>
</tr>
<tr>
<td>13.4 Defined applications</td>
<td>249</td>
</tr>
<tr>
<td>14 Appendix C: BIOS password</td>
<td>250</td>
</tr>
<tr>
<td>14.1 Changing the BIOS password</td>
<td>250</td>
</tr>
<tr>
<td>Index</td>
<td>251</td>
</tr>
</tbody>
</table>
1 Operating instructions

1.1 Using this manual

Material damage due to incorrect use.

- Only use the product for its intended purpose as described in the operating manual.
- Ensure adequate material resistance when using chemical substances.
- In case of doubt, contact the product manufacturer.

Before using the epMotion 5075 for the first time, please read the operating manual.
- Please view this manual as part of the product and keep it somewhere easily accessible.
- When passing on the device, always enclose the operating manual.
- If this manual is lost, please request another one. The current version of the operating manual can be found on our website at www.eppendorf.com.

1.2 Danger symbols and danger levels

1.2.1 Hazard icons

<table>
<thead>
<tr>
<th>Biohazard</th>
<th>Explosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric shock</td>
<td>Hot surface</td>
</tr>
<tr>
<td>Hazard point</td>
<td>Material damage</td>
</tr>
</tbody>
</table>

1.2.2 Degrees of danger

The degree of danger is a part of a safety note and distinguishes the possible results of non-observance from each other.

<table>
<thead>
<tr>
<th>Danger Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>Will lead to severe injuries or death.</td>
</tr>
<tr>
<td>WARNING</td>
<td>May lead to severe injuries or death.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>May lead to light to moderate injuries.</td>
</tr>
<tr>
<td>NOTICE</td>
<td>May lead to material damage.</td>
</tr>
</tbody>
</table>

1.3 Symbols used

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>Handling</td>
</tr>
<tr>
<td>1.</td>
<td>Actions in the specified order</td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>List</td>
</tr>
<tr>
<td>Text</td>
<td>Name of fields in the software</td>
</tr>
<tr>
<td>☛</td>
<td>Useful information</td>
</tr>
</tbody>
</table>
1.4 Abbreviations used

- **BCR**: Barcode reader
- **DNA**: Deoxyribonucleic acid (DNA)
- **DWP**: Deepwell plate
- **epT.I.P.S.**: **eppendorf** Totally Integrated Pipetting System
- **LH**: Liquid Handling
- **MTP**: Microplate
- **PCR**: Polymerase chain reaction
- **PDF**: Portable Document Format
- **USB**: Universal Serial Bus
- **UV**: Ultraviolet radiation

1.5 Glossary

A
- **Application**: Programs for a specific application. An application includes the procedure and the equipping of the worktable.

B
- **Barcode ID**: Character string that epBlue uses to identify samples and labware.
- **Barcode reader**: Device for reading a barcode.

C
- **Command**: A step in a procedure. Various parameters can be set for commands. Each command triggers an action, e.g., the transport of liquids.

D
- **Destination labware**: Labware that liquid is dispensed into during the application. Destination labware refers to a plate or rack.
- **Destination location**: Position that liquid is dispensed into during the application.
- **Destination vessel**: Vessel liquid is dispensed into during the application.

E
- **Dispensing tool**: Tool that aspirates and dispenses liquid. Single-channel dispensing tools and eight-channel dispensing tools are available for various volume ranges.
- **Entry list**: List with information on the barcode ID. For example, the list contains the position and name of a sample. If you would like to import an entry into epBlue, you do not need to manually enter the barcode IDs. epBlue imports entry lists as CSV or XML files.
- **epT.I.P.S.® Motion**: epMotion pipette tips. Only epT.I.P.S.® Motion can be used on the epMotion. epT.I.P.S.® Motions are available with or without a filter.

F
- **Filling volume**: Maximum liquid volume of a labware. The epMotion uses the gripper to transport the labware up to the filling volume. The epMotion aspirates liquid from the labware up to the filling volume. The filling volume is higher than the working volume.

G
- **Gripper**: Tool that transports labware.

H
- **Height adapter**: Adapter for low labware. The height differences among the labware will be offset to decrease the tool holder paths, thereby decreasing the run time of the application as well.
Input list
List with information on an ID-marked source labware. In the list, IDs and positions of the samples, which are located in the source labware, are stored in addition to other information. An input list is created for each ID-marked source labware when the application is started, see Result list.

Intermediate labware
Labware that is used to dispense and aspirate liquids during the application.

Intermediate labware
Vessel that is used to dispense and aspirate liquids during the application.

Intermediate location
Position that is used to dispense and aspirate liquids during the application.

Labware
Racks, plates, tips, etc. which are placed on the worktable.

Pattern
Pattern in which liquid is aspirated and dispensed. Patterns are defined in a transfer command. Patterns are defined as regular patterns, standard patterns and irregular patterns. Patterns are independent in x-direction and y-direction.

PCR clean
PCR clean is an Eppendorf AG purity grade for consumables. PCR clean meets the requirements for standard products, e.g., precision, accuracy, wetting behavior, tightness. PCR clean also meets the requirements with regard to absence of human DNA, DNase, RNase and PCR inhibitors.
Consumables with the PCR clean purity grade are controlled and certified by an external laboratory.
Certificates are available for downloading from our webpage www.eppendorf.com.

Procedure
Sequence of commands that are executed one after the other. Part of an application.

Rack
Mount for tubes or pipette tips.

Reservoir
Reservoirs are used to hold reagents. Reservoirs are hung in a ReservoirRack or placed directly on the worktable.

Result list
List with information on an ID-marked destination labware. In the list, IDs and positions of the samples, which are located in the destination labware, are stored in addition to other information. A result list is created for each ID-marked destination labware at the end of an application, see Input list.

Source labware
Labware that liquid is aspirated from during the application. Source labware refers to a plate or rack.

Source vessel
Vessel liquid is aspirated from during the application.

Thermorack
Temperable rack for smaller vessels, e.g., Safe-Lock tubes for 0.5 mL, 1.5 mL or 2 mL.

Tube
Tube or single well of a plate.

Vacuum unit
The vacuum unit uses a vacuum to suck liquid from a filter plate. The vacuum unit consists of a vacuum manifold, vacuum pump and Vac Frame.

Working volume
Liquid volume for a labware. The epMotion fills a vessel with low levels of contamination up to the working volume. The working volume is less than the filling volume.

Worktable
epMotion work surface where labware and tools are placed. In the software, the epMotion worktable is shown as the epBlue worktable.
1.6 Change history

<table>
<thead>
<tr>
<th>Version of the operating manual</th>
<th>Date</th>
<th>Corresponding software version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5075 900.831-02</td>
<td>October 2012</td>
<td>epBlue 20.4.1 and higher</td>
<td>Description of the ID functions updated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum mixing time for TMX changed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Preset administrator password changed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Error corrections.</td>
</tr>
</tbody>
</table>
2 Product description

2.1 Main illustration

Fig. 1: Front view of the epMotion 5075

1 Carrier 2 Worktable
3 Front hood 4 Waste container
5 Mouse 6 Monitor

Fig. 2: Section of the rear view of the epMotion 5075

1 PC 2 Interfaces (see p. 187)
3 Mains connection 4 Mains connection

Only connect devices to the interfaces that meet the IEC 950/EN 60950 (UL 1950) standards.
2.2 Delivery package

The following accessories for the epMotion are included in the standard scope of delivery:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Order no. (international)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5075 753.006</td>
<td>Waste box</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>Optical sensor</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>Power cable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compatible to the country where the order was placed or determined</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>Tool for transport safety device</td>
</tr>
<tr>
<td>1</td>
<td>5075 900.831</td>
<td>Operating Manual epMotion 5075 with integrated PC and epBlue</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>epBlue software installation CD-Rom</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With an operating manual as a PDF</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>Recovery DVD for Simatic 627 industrial PC</td>
</tr>
</tbody>
</table>

The delivery package for the epMotion 5075 LH is expanded to include by the following:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Order no. (international)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5075 000.750</td>
<td>Automated pipetting system epMotion 5075 LH with integrated PC as 5075 000.008 plus integrated industrial PC, keyboard and mouse</td>
</tr>
</tbody>
</table>

The delivery package for the epMotion 5075 VAC is expanded to include the following:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Order no. (international)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5075 000.768</td>
<td>Automated pipetting system epMotion 5075 VAC with integrated PC as 5075 000.016 plus integrated industrial PC, keyboard and mouse</td>
</tr>
<tr>
<td>1</td>
<td>5075 784.009</td>
<td>Reservoir 400 mL</td>
</tr>
<tr>
<td>1</td>
<td>5075 778.009</td>
<td>Vac frame 1</td>
</tr>
<tr>
<td>1</td>
<td>5282 000.018</td>
<td>Gripper</td>
</tr>
</tbody>
</table>

The delivery package for the epMotion 5075 TMX is expanded to include by the following:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Order no. (international)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5075 000.784</td>
<td>Automated pipetting system epMotion 5075 TMX with integrated PC as 5075 000.733 plus integrated industrial PC, keyboard and mouse</td>
</tr>
</tbody>
</table>

The accessories for the epMotion with epBlue ID expanded by the following:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Order no. (international)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>– (only epBlue ID)</td>
<td>Barcode reader</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With USB connection cable and table stand</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>USB dongle (“eLicenser”)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With epBlue hardware key code card</td>
</tr>
</tbody>
</table>

A detailed overview of the accessories and the article numbers can be found separately (see Accessories on p. 181).
2.3 Features

With epMotion 5075 you execute dispensing processes automatically. The PC with epBlue software is used to control the epMotion 5075. The epMotion 5075 can be supplied with a variety of dispensing tools which are inserted automatically. These dispensing tools and the appropriate pipette tips in each case (epT.I.P.S. Motion) can be used to dispense quantities of liquid in the volume range from 1 μL to 1000 μL.

The epMotion 5075 is available in the following versions:

- Liquid Handling (LH)
- Vacuum Unit (VAC)
- Thermomixer (TMX)

Also refer to the operating manual of the industrial PC and the keyboard.

The epBlue ID variant allows the tracking of samples using barcodes and the connection to lab information systems.

2.3.1 Principle of operation

The liquid is samples from the source tube in pipette tips, transported and deposited in the destination tube.

On request, an optical sensor automatically checks the correct selection and positioning of tubes, available supplies and the position of pipette tips in the rack, as well as liquid level in some tubes.

With the aid of predefined commands, you can create and edit simple or complex dispensing operations yourself and combine these into methods. In the process, you specify in the software, among other things, the source location and destination location as well as the desired dispensing or transport pattern.

The epMotion 5075 VAC is additionally equipped with a complete vacuum unit. This system is designed for the processing of vacuum-based high-throughput systems for nucleic acid purification in 96-well format, for example.

For further information, go to www.epMotion.com
2.4 Overview of hardware and labware

Familiarize yourself with the epMotion 5075 and the labware prior to first use.

2.4.1 Hardware

Worktable

The locations on the worktable differ depending on the variant supplied.

The locations for dispensing tools, gripper and thermal modules are identical for all variants:

- Locations T1 to T4 are provided for dispensing tools which you can position in any sequence. The locations of the dispensing tools are determined automatically following the start of a method. Determination starts at T1.
- Position the gripper and the gripper holder at location T0.
- Up to three locations (C1, C2, C3) can also be equipped with a thermal module.

Location B0 can only be accessed by dispensing tools if it is occupied by a 300 mL or 400 mL reservoir or similar labware.
The epMotion 5075 LH has 12 locations for labware (racks, plates, thermoracks and thermoblocks or tips). Up to three thermal modules can be located on the locations C1, C2 and C3.

The epMotion 5075 VAC has 11 locations for labware. There is also the vacuum unit at location B4. A Vac Frame can be temporarily stored on a Vac Holder in location C4. If you are using a Vac Lid, this is positioned in location T0. Up to three thermal modules can be located on the locations C1, C2 and C3. With the version with thermomixer and vacuum unit you cannot locate any thermal modules.

The epMotion 5075 VAC has 11 locations for labware. In addition a thermomixer is located on location A4. A thermal module can be optionally placed either onto location C1 or onto location C2. With the version with thermomixer and vacuum unit you cannot locate any thermal modules.
Work surface adapter for the epMotion worktable

The work surface adapter for the epMotion worktable consists of a set of 4 screw-on feet for adjusting the height of the epMotion. The screw-on feet may only be installed by service personnel authorized by Eppendorf.

Dispensing tools (tools)

A total of six different dispensing tools is available for selection. For the three volume ranges 1 to 50 μL, 20 to 300 μL and 40 to 1000 μL a single-channel dispensing tool (TS xx) and an eight-channel dispensing tool (TM xx-8) are available in each case.

The dispensing tool required for a method is automatically picked up in the tool holder of the carrier and set down again once the dispensing task is complete.

<table>
<thead>
<tr>
<th>Dispensing tool</th>
<th>Volume range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS 50</td>
<td>1 μL – 50 μL</td>
</tr>
<tr>
<td>TM 50-8</td>
<td></td>
</tr>
<tr>
<td>TS 300</td>
<td>20 μL – 300 μL</td>
</tr>
<tr>
<td>TM 300-8</td>
<td></td>
</tr>
<tr>
<td>TS 1000</td>
<td>40 μL – 1000 μL</td>
</tr>
<tr>
<td>TM 1000-8</td>
<td></td>
</tr>
</tbody>
</table>
Gripper

The gripper is for transporting labware. The transport of labware is controlled in the software by means of the appropriate commands. The 2 retaining pins on each of the gripper jaws hold the labware to be transported. Heavier labware is held by the pegs behind them. The gripper is automatically picked up and set down by the carrier.

Damage to the gold contacts from handling.

The function of the gold contacts of the gripper can be impaired through handling or contamination.

- Do not touch the gold contacts.

The gripper can transport the following labware.

- Thermoblock: joint transport of block with a plate on it as a fixed combination.
- Thermorack: joint transport of thermorack and tubes.
- Plates: all plates like MTP, DWP, skirted PCR plates and filter plates; also pick up or set down plates on height adapter and thermoadapter.
- Reservoir 300 mL and 400 mL: watch filling levels when transporting.
- Vac Frame: Transport to the vacuum unit or holder for Vac Frames.
- Vac Lid: transport to the filter plate before the vacuum is switched.

The following labware cannot be transported.

- Racks with tips
- Height adapter
- Thermoadapter
- Racks with reaction vessels
- Holder with reaction vessels

Thermal module

Temperature control is effected with the aid of Peltier elements which cool or heat labware. A temperature of 0°C to 110°C can be selected for the thermal modules.

Hazard when using flammable or explosive liquids.

- Do not use explosive substances.
- Heat slightly flammable substances only in small quantities below the boiling point.
- Do not exceed the boiling point of solutions.

Burns from hot surfaces.

- Do not touch the metal surface of the thermal module if the method is interrupted or after it is complete.
- Check the current temperature of the thermal modules. The temperature is displayed in the status bar at the bottom edge of the screen.
- Wait until the thermal module has cooled down completely.

If a PCR plate is placed directly on the surface of the thermal module, the wells are not temperature controlled as well and the secure location of the PCR plate on the thermal module may be impaired by relatively large tolerances in well dimensions.

When heating tubes containing organic solvents or even water/solvent mixtures, observe the safety measures and safety data sheets applicable to the solvent or the mixture.
Thermomixer

The thermomixer can temperature control labware and mix. Temperature control is effected with the aid of Peltier elements which cool or heat labware. A temperature between 4°C to 95°C can be selected.

![WARNING!]

Danger of injury from ejected labware when using the Thermomixer command
When employing too heavy labware and using too high speeds labware can come loose from the holder and be hurled around.
- Ensure that the front cover is closed and undamaged.
- Select low speeds with heavy labware.
- Only use compatible labware.

![WARNING!]

Hazard when using flammable or explosive liquids.
- Do not use explosive substances.
- Do not heat highly flammable substances on the thermomixer.
- Heat slightly flammable substances only in small quantities below the boiling point.
- Do not exceed the boiling point of solutions.

![CAUTION!]

Burns through hot thermomixer!
- Do not touch the metal surface of the thermomixer if the method is interrupted or after it is complete.
- Check the current temperature of the thermomixer. The temperature is displayed in the status bar at the bottom edge of the screen.
- Wait until the thermomixer has cooled down completely.

![CAUTION!]

Contusion through moving thermomixer
The thermomixer can cause light contusion during operation if touched.
- Ensure that the front cover is undamaged and is closed during operation.
- Do not reach into the epMotion during operation.

![NOTICE!]

Physical damage due to cross contamination and splashing liquid when using the Thermomixer command
With too high liquid level in the tubes and too high speeds liquids can splash out from the tubes which damage the device and can lead to cross contamination.
- Do not mix at high rotational speed with high liquid levels.

The lowest temperature reached by the thermomixer depends on the ambient temperature and can be a maximum of 15°C below room temperature. With a room temperature of e.g. 20°C, the lowest temperature reached by the thermomixer is 5°C

If a PCR plate is placed directly on the surface of the thermomixer, the wells are not temperature controlled as well and the secure location of the PCR plate on the thermomixer may be impaired by relatively large tolerances in well dimensions.

When heating tubes containing organic solvents or even water/solvent mixtures, observe the safety measures and safety data sheets applicable to the solvent or the mixture.
Vacuum unit (only epMotion 5075 VAC)

In the vacuum unit, a vacuum pump generates a vacuum which enables the contents of filter plates to be extracted into a collecting vessel. For example, a nucleic acid purification or PCR cleanup process can run fully automatically. Filter plates can be positioned on the vacuum unit with the aid of the gripper.

Example of load

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vac Lid</td>
<td>2</td>
<td>Filter plate</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Vac Frame</td>
<td>4</td>
<td>Collection vessel</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Vacuum unit</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A collection vessel is first placed on the vacuum unit. A metal Vac Frame is used to lower the collection vessel into the vacuum manifold. A filter plate is placed on the Vac Frame. To improve the vacuum, a Vac Lid can be placed on the filter plate.
Barcode reader

The barcode reader is connected to a USB port of the industrial PC. To be able to use the barcode functions in the software, the supplied dongle (hardware key, "eLicenser") must be enabled (see separate enclosed leaflet) and connected to the industrial PC. The barcode reader has 2 operating modes:

- Manual trigger mode: press the key on the barcode reader to read data.
- Demand mode: the barcode reader continuously reads data and only needs to be held in the vicinity of a barcode for it to be able to detect and read it.

You can change the mode in the Admin tab of the epBlue software (see The Admin tab on p. 117).

The system allows you to track samples and document the used samples and reagents using barcode IDs. The barcode IDs can be read or entered at the start of a run. After completion of the run, the system issues a result list with the barcode IDs of the samples and their location in the labware.
Optical sensor

The optical sensor is located in a tube to the right of the carrier. With the aid of an optical procedure the optical sensor measures the light reflection of surfaces, e.g., of labware on the worktable or of liquids placed in the tubes. The optical sensor performs the following checking tasks on the epMotion 5075:

- Detecting codes on tip racks and tube racks
- Determining existing stocks of tips in positioned tip racks so that tip racks which have been started can also continue to be used
- Checking whether the correct rack has been inserted (height detection)
- Detecting height of plates
- Detecting whether a location programmed as occupied on the worktable really is occupied
- Detecting 30 mL or 100 mL reservoirs (reaction vessels) and ReservoirRack modules in the ReservoirRack.
- Automatically checking the adjustment of the entire device by means of exact measuring points on the surface of the worktable
- Detecting 30 mL or 100 mL reservoirs (reaction vessels) and ReservoirRack modules in the ReservoirRack.
- Automatically checking the adjustment of the entire device by means of exact measuring points on the surface of the worktable
- Detecting the filling level of the liquids (liquid detection) in reservoirs, tubes and plates

CAUTION! Faulty liquid detection due to air bubbles.

Liquid detection cannot be performed reliably if there are air bubbles in tubes or wells.

- Before the start of a method, ensure that there are no air bubbles in tubes or wells.
- Remove bubbles by tapping the tubes or plates sharply several times.

Waste system

The standard waste container can hold approx. 400 individually-ejected 1000 µL tips or correspondingly more of smaller tip sizes.
2.4.2 Labware

The following list gives you an overview of the labware of the epMotion 5075. More information on available labware components can be found in the appendix (see Labware on p. 189) as well as in the Internet at www.epMotion.com.

<table>
<thead>
<tr>
<th>Labware</th>
<th>Description</th>
<th>Labware folder/more information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubes</td>
<td>You can use different reactions vessels on the epMotion 5075 by loading ReservoirRack modules, racks and thermoracks:</td>
<td>Equip Racks + Modules with Tubes</td>
</tr>
<tr>
<td></td>
<td>• Safe-Lock tubes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Standard tubes 3810X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PCR tubes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Conical tubes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tubes from various manufacturers</td>
<td></td>
</tr>
<tr>
<td>Racks</td>
<td>Racks are tube holders for up to 24 tubes with various diameters.</td>
<td>Equip Racks + Modules with Tubes</td>
</tr>
<tr>
<td>Height adapter</td>
<td>To keep carrier travel times and distances as short as possible, there are various height adapters (with a height of 40, 55 and 85 mm) which you can use to compensate for different heights of plates.</td>
<td>Adapter (see Height adapter on p. 202)</td>
</tr>
<tr>
<td>Plates</td>
<td>You can use different plates on the epMotion 5075:</td>
<td>Plates (see Plates on p. 203)</td>
</tr>
<tr>
<td></td>
<td>• Microplates (MTP) with 6, 24, 48, 96 or 384 wells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Deepwell plate (DWP) with 24, 96 or 384 wells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PCR plates with frame (skirted) with 96 or 384 wells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Filter plates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tube plates with 96 individual tubes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rack for microtubes in a 96-well grid</td>
<td></td>
</tr>
<tr>
<td>Thermoadapter</td>
<td>The PCR thermoadapter is used for temperature controlling 96-well and 384-well PCR plates. However, it does not form a fixed combination with a plate. The thermoadapter DWP/96 is used for temperature controlling 96-well DWP plates. However, it does not form a fixed combination with a plate.</td>
<td>Adapter (see Thermoadapter on p. 195)</td>
</tr>
<tr>
<td>Labware</td>
<td>Description</td>
<td>Labware folder/ more information</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Thermoblock</td>
<td>The thermoblock is used for temperature controlling 96-well PCR plates (e.g., Eppendorf twin.tec semi-skirted or skirted). It forms a fixed combination with the plate which can only be moved together.</td>
<td>Thermoblocks with plates (see Thermoblock (384 wells) on p. 195)</td>
</tr>
<tr>
<td>Thermoracks</td>
<td>The thermorack with lid holder and 24 positions which can be temperature controlled is for the temperature control of smaller tubes (e.g., Eppendorf Safe-Lock tubes for 0.5 mL, 1.5 mL or 2 mL). The thermorack has a high heat capacity and a slower heat transfer i.e. it retains the temperature away from the temperature control over a longer time period. But it also takes longer to reach the desired temperature.</td>
<td>Equip Racks + Modules with Tubes (see Thermoracks and thermoracks TMX on p. 193)</td>
</tr>
<tr>
<td>Thermoracks TMX</td>
<td>The thermorack TMX with lid holder and 24 positions which can be temperature controlled is for the temperature-control of smaller tubes (e.g., Eppendorf Safe-Lock tubes for 0.5 mL, 1.5 mL or 2 mL). It is optimized for the application in the thermomixer as it is easier than the normal thermoracks and therefore permits higher rotational speed during mixing. It has a lower heat capacity but a faster heat transfer, i.e. it quickly reaches the desired temperature but does not retain it for long away from the temperature control.</td>
<td>Equip Racks + Modules with Tubes (see Thermoracks and thermoracks TMX on p. 193)</td>
</tr>
<tr>
<td>0.5/1.5/2.0 mL rack</td>
<td>The 0.5/1.5/2.0 mL rack has 24 bores. You can directly insert vessels with a volume of 1.5 mL or 2 mL, and use vessels with a volume of 0.5 mL with adapter sleeves. The 0.5/1.5/2.0 mL rack has lid holders. The lid holders are on the right, next to the bore for the vessel. The lid holder vertically clamps the tube lids. The 0.5/1.5/2.0 mL rack is transported with the gripper. The 0.5/1.5/2.0 mL rack is well-suited for use in the thermomixer.</td>
<td>Equip Racks + Modules with Tubes (see Thermoracks and thermoracks TMX on p. 193)</td>
</tr>
<tr>
<td>ReservoirRack</td>
<td>The ReservoirRack is used to hold a maximum of 7 reservoirs or ReservoirRack modules.</td>
<td>Equip Holder with Tubs + Modules (see Reservoirs and ReservoirRack on p. 197)</td>
</tr>
<tr>
<td>Reservoirs (tubs)</td>
<td>To supply liquids, reservoirs in sizes 30 mL and 100 mL are available. The ReservoirRack holds a maximum of 7 reservoirs.</td>
<td>Equip Holder with Tubs + Modules (see Reservoirs and ReservoirRack on p. 197)</td>
</tr>
<tr>
<td></td>
<td>For larger volumes, an autoclavable reservoir with a capacity of 400 mL is available.</td>
<td>Tubs</td>
</tr>
</tbody>
</table>
ReservoirRack module
ReservoirRack Modules TC (temperature controlled) are equipped with vessels and placed in the ReservoirRack as ReservoirRack modules.

Tips
epT.I.P.S. Motion are pipette tips for single use with the epMotion. They are available in three volume sizes to suit the dispensing tools (50 μL, 300 μL and 1000 μL), in each case with or without filter. epT.I.P.S. Motion are available as racks or reloads.

Tip holder
The tip holder is an adapter that holds the epT.I.P.S. Motion Reloads.
2.4.3 Important volume terms for tubes and wells

The following remarks about volume terms are significant for selecting suitable tubes and plates and for some of the sequences when editing a method.

Filling volume

Maximum filling volume for a tube or well. A much larger volume is rejected by the software with an error message.

Working volume

The working volume for wells is primarily in the range of 50% of max. filling volume. In the case of larger tubes, the working volume is a correspondingly larger percentage. Statements about working volume should be understood as recommendations.

Low-contamination dispensing into the well or tube is possible up to the working volume with key classes of liquid.

MTP 96/384, PCR 96/384: fluid displacement in the working volume

When immersing tips in filled wells of 96-well and 384-well plates, volume displacement can cause the liquid to overflow if the optical sensor is switched off. You can avoid this by not exceeding the working volume in the wells.

To display the filling volume, click in the *info* file window or mark the desired labware in the worktable mode.

Maximum immersion in wells is possible with all tips for 96-well plates and with 50 μL tips for 384-well plates (generally 1 mm from the bottom of the tube). To do so select in a command (Sample Transfer, Reagent Transfer) the corresponding aspirate from bottom option (see Immersion depth and dispensing height on p. 221).
The term "remaining volume" refers to the volume which can no longer be aspirated from a tube, and which is dependent on tube geometry.

The pipette tip is generally immersed 3 mm in the liquid before liquid is aspirated. The pipette tip is moved downwards during aspiration of liquid. The immersion depth of 3 mm is maintained.

Under standard conditions, liquid can be aspirated up to the following limit data: 1.0 mm gap between the bottom of the tube and the pipette tip and simultaneously an immersion depth of the pipette tip into the liquid of 0.7 mm. The immersion depth of the pipette tip reduces at standard conditions at the tube bottom from 3 mm to 0.7 mm. The remaining volume is therefore calculated at standard conditions from a filling level of 1.7 mm.

Special cases for remaining volume

The initial immersion depth of 3 mm is included in the liquid type of the method. Higher immersion depths are only achieved if Aspirate from bottom is used. In the case of very tall tubes (e.g., primary tubes for blood), immersion to the bottom of the tube is not possible. In these cases, the remaining volume increases. There are consequently varying remaining volumes depending on tube type. Shorter 50 μL or 300 μL pipette tips and very tall tubes result in greater remaining volumes than the long 1000 μL pipette tip. Aspirations of liquid up to the remaining volume are liable to a greater risk of being incorrect. The curvature of the liquid surface could trigger falsified aspiration results.

Changing remaining volume

Under standard conditions the smallest distance between the pipette tip and the tube bottom is 1 mm. Exceptions are 30 mL and 100 mL reservoirs where it is 2.5 mm.

Note the comments on adjusting bottom tolerance (see Adjusting the labware bottom tolerance on p. 102).
Multidispensing

Reverse stroke in multi-dispensing

![Diagram of multidispense before and after reverse stroke]

Fig. 5: Multidispense before and after reverse stroke

In multidispense, a reverse stroke takes place after aspiration of the liquid. Here the sampled liquid is returned into the source vessel. The volume of the reverse stroke is included in the aspiration volume and the required volume in the source vessel. At the start of the method, these volumes are automatically included in the calculation of volume by the software.

The reverse stroke is of equal size in all liquids, but varies according to pipette tip.

When dispensing the defined errors for pipetting are exceeded (see Dispensing Tools on p. 178).

Extra aspiration in multi-dispensing

After the reverse stroke, there is more liquid in the pipette tip than the amount required for the dispensing steps. This extra aspiration is dispensed after dispensing is complete.

The dispensing of the extra aspiration depends on the tip change. The extra aspiration is returned to the source vessel if no tip change has been defined before the liquid aspiration. The extra aspiration is dispensed into the waste container if the tips are changed before each aspiration of liquid.

When water is multidispensed, the following approximate extra aspirations result for each pipette tip:

- 50 μL tips: approx. 2.5 μL extra aspiration
- 300 μL tips: approx. 5.0 μL extra aspiration (only about 3.7 μL with single-channel dispensing tool)
- 1000 μL tips: approx. 35.2 μL extra aspiration

Aspiration volume

Aspiration volume is the volume which can be aspirated and which is required for the task in question. The volume is calculated at the start of the method from the sum of all aspirations.

In the case of multidispense, more liquid has to be aspirated for technical reasons than is calculated from the sum of all dispensing steps.

The following volumes must be available in the source vessel:

- 50 μL tips: approx. 5.8 μL extra aspiration
- 300 μL tips: approx. 45.2 μL reverse stroke (only approx. 16.7 μL with single-channel dispensing tool)
- 1000 μL tips: approx. 50.3 μL extra aspiration

The reverse stroke is the same size for all liquids.
Example aspiration volumes with multidispense

A 96-well plate is to be filled with 10 μL water per well by the multidispense method. The eight-channel dispensing tool TM 50-8 is used. Aspiration will be completed from one reservoir. Tips are not changed before the next aspiration of liquid.

Total aspiration volumes for multidispense:
- 10 μL for 96 wells: 960 μL
- 8 x 5.8 μL reverse stroke: 46.4 μL
- 8 x 2.5 μL extra aspiration: 20 μL
- Total: 1026.4 μL

The volume calculation of the software increases the sum total automatically be the remaining volume that cannot be aspirated from the source vessel. We do not recommend using multidispense for water before a dispensing volume of 3 μL. With small volumes, pipetting always offers better free-jet capability as well as precision and correctness. With pipetting, only the required volume is aspirated and dispensed.

Required volume

Required volume is the total of "aspirated volume" and "remaining volume" in the tube. The minimum required volume is calculated at the start with the aid of the number of samples. For reasons of reliability (meniscus formation varies in the tubes), the "Required Volume" should always be exceeded.

Volume check

Knowledge of the software is required to perform the volume check.

If it is known that the solution for dispensing has a density significantly different from that of water, check whether this needs to be compensated in the volume entry.

Perform the following check.

1. From the ep user and the Routine folder copy the Fill 96 method to your user directory.
2. Adapt the copied method to your own labware.
3. Weigh the corresponding plate empty.
4. Fill the plate in the epMotion with water with the aid of the modified method.
5. Weigh the plate again.
6. Repeat the process with the liquid to be tested and another plate.
7. Use the weighing results to perform a volume calculation (mass : density = volume). The density of water at 20 °C is approx. 0.9982 mg/μL; take account of the density depending on the current temperature when converting (g/mL = mg/μL). In the case of the plate filled with water, you obtain a statement about the correctness of the dispensing tool for the selected volume. Assess the result with the test liquid accordingly, taking account of the density.
8. Depending on the result, adapt the volume in the commands. Rule of thumb: a change in density of 10% for identical dispensing conditions affects the dispensing result by between 0.2% and 1%.
9. Other physical variables (viscosity, vapor pressure, surface tension etc.) of the solution likewise affect the result.
Volume correction after optical sensor error message

Knowledge of the software is required to perform volume correction.

If the optical sensor detects a too high or too low filling level or the (correct) filling level cannot be detected, a display appears during the Start sequence:

- **Maximal volume** indicates the maximum filling volume of the tube.
- **Minimal volume** indicates the required volume for aspiration based on the number of samples.
- **Calculated volume** is the volume calculated from the tube data and from measuring liquid level.

Perform the appropriate volume corrections at the tube:
- Reduce liquid if **Calculated volume** is larger than **Maximal volume**.
- Increase liquid if **Calculated volume** is smaller than **Minimal volume**.

Following volume correction at the tube, you have the following options.
- To perform Liquid Detection again, press the **Repeat scan** button and **OK**. **Repeat scan** can also be selected, for example, if the optical sensor was unable to perform a successful detection due to an air bubble in the liquid and this bubble has been removed by knocking etc. **User input** should be selected if the filling volume is below the detection limit of the optical sensor, for example.
- Overwrite the preset volume in the bottom input field with the correct volume and then press **OK**.
- Select **accept level and continue** if the displayed volume is to be accepted in a reagent transfer. The optical sensor then scans the next tube.
- Cancel the method. Select **abort** and then press **OK**.

If you happen to be working with several sources, see the comments in the Appendix (see **Pattern with several plates as source or destination vessels on p. 219**).
3.1 Intended use

The device can be used in laboratories for research, development, industrial and routine work and training and education. Applications include but are not limited to the fields of life sciences, biotechnology, chemistry, clinical research, routine diagnostics. epMotion 5075 automated pipetting systems are designed for contamination-free, precise and correct measuring and transferring of liquids. The autoclavable dispensing tools work in a volume range from 1 μL to 1000 μL.

The epMotion 5075 VAC with integrated vacuum station, for example, carries out fully-automatic nucleic acid purification.

The epMotion 5075 TMX with an integrated thermomixer is used for applications which allow mixing and incubating with open tubes.

The epMotion 5075 meets the relevant fundamental requirements of the EC directives and standards listed in the declaration of conformity. epMotion 5075 automated pipetting systems are only to be used in rooms and must only be used by qualified staff with the appropriate training.

3.2 Information on product liability

In the following cases, the designated protection of the device may be compromised. Liability for any resulting property damage or personal injury is then transferred to the operator:

- The device is not used in accordance with the operating manual.
- The device is used outside of its intended use.
- The device is used with accessories or consumables which are not recommended by Eppendorf.
- The device is maintained or repaired by people not authorized by Eppendorf.
- The user makes unauthorized changes to the device.

3.3 Warnings for intended use

Read the operating manual first and observe the following general safety instructions before using the epMotion 5075.

WARNING!

Lethal voltages inside the device.

- Ensure that the housing is always closed and undamaged so that no parts inside the device can be contacted by accident.
- Do not remove the housing of the device.
- Do not allow any liquids to penetrate the inside of the housing.
- Do not allow the device to be opened by anyone except service personnel who have been specifically authorized by Eppendorf.

WARNING!

Electric shock due to damage to device or mains cable.

- Only switch on the device if the device and mains cable are undamaged.
- Only use devices that have been properly installed or repaired.
- In case of danger, disconnect the device from the mains supply.

DANGER!

Danger of explosion!

- Do not operate the device in areas where work is completed with explosive substances.
- Do not use this device to process any explosive or highly reactive substances.
- Do not use this device to process any substances which could create an explosive atmosphere.
DANGER!

Damage to health from hazardous aerosols.
When working with substances that can be hazardous to health, harmful aerosols may form and escape from the vacuum pump in an uncontrolled manner.
- Contact Eppendorf AG before starting to work with such substances.

WARNING!

Damage to health due to handling infectious liquids and pathogenic germs.
- Observe the national regulations for handling these substances, the biological security level of your laboratory, the material safety data sheets and the manufacturer's application notes.
- Wear personal protective equipment (PPE).
- Follow the instructions regarding hygiene, cleaning and decontamination.
- Comprehensive information on the regulations for handling germs and biological material in risk group II or higher can be found in the "Laboratory Biosafety Manual" (source: World Health Organization, Laboratory Biosafety Manual, in the valid version).

WARNING!

Hazard when using flammable or infectious liquids.
The waste container may contain residues of flammable or infectious liquids in ejected tips.
- If you use flammable liquids (e.g., ethanol 98%), treat the waste before disposing of it in accordance with your laboratory guidelines.
- Dispose of infectious material, waste or tips in accordance with national and local safety regulations.

WARNING!

Risk from incorrect supply voltage
- Only connect the device to power supplies which correspond with the electrical requirements on the nameplate.
- Only use sockets with a protective earth (PE) conductor and a suitable mains cable.

WARNING!

Risk to health due to contaminated device.
- Perform decontamination before storing or dispatching the device and/or its accessories.

CAUTION!

Poor safety due to incorrect accessories and spare parts.
The use of accessories and spare parts other than those recommended by Eppendorf may impair the safety, function and precision of the device. Eppendorf cannot be held liable or accept any liability for damage resulting from the use of incorrect or non-recommended accessories and spare parts or from the improper use of such equipment.
- Only use accessories and original spare parts recommended by Eppendorf.

CAUTION!

Damage to health due to ergonomically inadequate workstation.
- Follow the national regulations governing ergonomics of display workstations.

NOTICE!

Damage and corrosion from spilled liquids.
- Disconnect the power plug if relatively large quantities of liquid are involved.
- Mop up spilled liquids immediately. When mopping up, pay particular attention to specifications in the safety data sheet.
- Do not make long-term use of chemicals which form aggressive vapors (e.g., 37% hydrochloric acid). Aggressive vapors and chemicals can cause color changes to the surface or, in the course of time, cause damage to the moving parts and electronics.
NOTICE!

Damage and corrosion from liquids spilled in the vacuum unit.
- Disconnect the power plug if relatively large quantities of liquid are involved.
- Mop up spilled liquids immediately. When mopping up, pay particular attention to specifications in the safety data sheet.

NOTICE!

Damage to the device from the device tilting.
- Note that during transport epMotion 5075 the center of gravity is at the back.
- Follow national safety regulations regarding the transport of heavy loads.
- Carry the epMotion 5075 using at least two people and reach underneath the device at the sides.
- Place it on an even and strong work surface epMotion 5075 of sufficient bearing capacity. The device must not be placed on a trolley or at an angle. Check that it is horizontal using a spirit level if necessary.

NOTICE!

Damage from overheating.
- Do not place the device close to sources of heat (e.g., radiator, drying cabinet).
- Do not expose the device to direct sunlight.
- Ensure free circulation of air by maintaining a distance of at least 6 cm from adjacent devices and the wall, on all sides of the device, and keep the underside of the device clear.

NOTICE!

Impaired function due to vibration.
- Do not place the epMotion 5075 on a surface with devices which generate vibration (e.g., vortex mixer, thermomixer, centrifuges).

NOTICE!

Size of disposables can change through autoclaving.
- Do not use autoclaved disposable products in automated applications.

NOTICE!

Faults caused by additionally installed software.
Temporary installed software can also cause faults.
- Only use software preinstalled by Eppendorf.
- Any additionally required software must be approved by Eppendorf.

NOTICE!

Data loss due to lack of data backup or incorrect storage of data carriers.
epBlue saves all information on user accounts, applications, labware and logfiles in a database on the epMotion PC. Damage to this database (e.g., due to a hardware fault) causes this information to be lost.
- Carry out regular database backups via the function Backup in Admin tab.
- Save the backup file on a secure data carrier and store it in accordance with the manufacturer instructions.

Eppendorf is not liable for data loss and its consequences.
3.4 Warning symbols and safety devices on the device

This section explains the warning symbols on the epMotion and the location of the safety devices.

<table>
<thead>
<tr>
<th></th>
<th>![Warning Symbol]</th>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>![General Hazard]</td>
<td>General hazard point. Follow the operating manual and in particular the safety notes.</td>
</tr>
<tr>
<td>2</td>
<td>![Warning] ![Stop]</td>
<td>WARNING The carrier may continue moving after the application has ended. Wait until the carrier has stopped moving before opening the front panel.</td>
</tr>
<tr>
<td>3</td>
<td>![DANGER] ![Hot Surfaces] ![Stop]</td>
<td>DANGER Risk of burns from hot surfaces.</td>
</tr>
<tr>
<td>4</td>
<td>![Housing Protection]</td>
<td>The housing protects the user from UV radiation, contamination and movable parts.</td>
</tr>
</tbody>
</table>
4 Installation

Installation of epMotion 5075 must always be carried out by Eppendorf AG or an Eppendorf AG service partner.
5 Operation

Damage from UV radiation.
UV radiation can cause color changes to the surface or, in the course of time, cause damage to the moving parts and electronics of the epMotion.

- Avoid UV radiation.

5.1 First steps

5.1.1 Check correct installation

Before using the epMotion 5075 for the first time, please ensure

1. that the epMotion 5075 has been correctly connected and commissioned.
2. that the device is not damaged in any way

5.1.2 Creating the first user account

In order to be able to use epBlue, an operator’s user account must be configured. It is recommended that you create individual user accounts for every operator who will use the epMotion 5075.

This section describes how, as administrator, you can create the first user account. Additional information on user accounts and user groups and their administration can be found in the extensive description of the Admin tab (see The Admin tab on p. 117).

1. Start epBlue and log in as administrator (see The Admin tab on p. 117).
2. Go to the administrator area and click there on the Admin tab on the left-hand side of the program window.

3. In the left-hand area of the Admin tab select the Account entry so that it is highlighted, and then select the Edit Account tab.
4. Click on *New Account*.
 The following form is displayed.
5. In the Account field, enter an account name for the new user.

6. In the Password and Confirm password fields, enter the password for the new user account. If the entries in the two fields do not match exactly, a message will be displayed. In this case, delete the contents of both fields and enter the password again.

7. In the Member of section, activate the user group to which you want the new user to belong. The user will have the user rights defined for the selected group (see Group overview on p. 125).

8. If you want to enable the account for a certain period of time, activate the Account valid until option and enter the expiry date there.

 You also have the option to lock the account until a certain day. To do this, activate the Disabled until option and enter the expiry date there.

 A disabled account can be enabled again by the administrator at a later time (see The Admin tab on p. 117).
9. If you wish, you can enter further information about the new user, e.g., the user's name and contact information. This information is optional. If you enter the name of the user he or she will be addressed by this name in the Home tab after login. Otherwise the account name will appear.

10. Click on Submit. The new user account is created. The user name appears in the Account List in the Edit Account tab.

11. If required, create further user accounts in the same way.

12. When you have finished, log out as administrator to prevent unauthorized access to the system.

5.2 Placing labware on the worktable

This section provides you with an overview of the supply of labware on the worktable.

Note!
Beyond the preconfigured standard labware available ex works, it is also possible to dimension individual or external labware for use with the epMotion 5075 and to incorporate it in the labware directories of the software. For more information on this, contact Eppendorf Service.

Caution!
Burns from hot surfaces.
- Check the temperature of the thermal modules before supplying the worktable. The temperature must be below 30°C.

Notice!
Material damage as a result of incorrect labware on thermal modules.
- At temperatures in excess of 60°C, only use labware made of metal, polypropylene (PP) or polycarbonate (PC) on the thermal module! An additional check of the temperature set and the labware used is effected in the method.
5.2.1 Placing the gripper and gripper holder

Risk of injury from sharp pins.
Cuts or other injuries to the skin from sharp pins on the insides of the gripper jaws.

- Always grasp the gripper at the top and not inside at the gripper jaws.

Fig. 6: Open (A) and close (B) gripper jaws

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

1. Place the holder on a level work surface. The lateral pin on the holder points towards the user.
2. Press together the levers of the gripper simultaneously. The gripper jaws open. The gripper jaw with the warning label points towards the user.
3. Position the slightly-open gripper over the holder so that the hole on the gripper jaw could take the lateral pin of the holder.
4. Allow the retaining pins to engage in the corresponding bores of the holder.
5. Check whether the lateral pin of the holder is located in the hole of the gripper jaw.
6. Place the holder and gripper in location T0.
5.2.2 Manually filling the vacuum unit (epMotion 5075 VAC)

To supply the vacuum unit manually, perform the following steps.

1. Place the collection vessel on the vacuum unit. You can use a microplate (MTP), deepwell plate (DWP), tube plate or a filter plate as the collection vessel. The 400 mL reservoir can be used for tasks like binding or cleaning steps, for example.

2. Then place the Vac Frame on the collection vessel. If the Vac Frame is positioned incorrectly, it is impossible for an adequate vacuum to build up.

3. The weight of the Vac Frame lowers the collection vessel into the vacuum unit.

4. Place the filter plate in the Vac Frame.

5. If appropriate, place a Vac Lid on the filter plate. The "Vac Lid" label points towards the user.
5.2.3 Position labware

Avoid placing very short labware next to very tall labware. Use a Height Adapter to compensate for the difference in height.

Use location B0 only for supplying with a 300 mL or a 400 mL reservoir. The dispensing tools cannot reach other labware (e.g., plates) without restriction, so that aspiration or dispensing of liquid is possible only to a certain extent and errors occur.

1. Position the dispensing tools on holders in any sequence in locations T1 to T4. The dispensing tools are fitted to and removed from the holder on the carrier fully automatically on the epMotion. The dispensing tools required for the method are detected by their coding.

2. For methods with Transport commands correctly position the gripper and holder in location T0. The gripper is fitted to and removed from the holder on the carrier fully automatically during a method run. The gripper is detected by its coding.

3. When using the vacuum unit with Vac Lid: place the Vac Lid on the holder for the gripper in location T0.

4. Position the Tip Rack in the location on the worktable in accordance with the method. In the process, the Tip Rack is pressed against the stops on opposite sides by the spring plate at the location.

5. Remove the lid from the Tip Rack.

6. When using Module Racks: place the filled Reservoir Rack on a B or C location (excluding B0). “A” locations may not be used.

7. Position the other labware required for your method in any locations. In the process, ensure that the labware is not tilted.

8. If desired, place a waste bag in the waste container and fix in position using the clamping ring. Pull the edge of the bag tightly downwards so that the path of the dispensing tool and access to the racks is not obstructed.

NOTICE!

- The lid lies loosely on the tip rack.
 - Never grip the tip rack by its lid to lift it up, always by the side. Otherwise it will fall.
 - Only take off the lid shortly before starting the method. The lid protects the tips from contamination.
5.3 Starting and exiting epBlue

5.3.1 Start epBlue and log in with your user account.

When the PC boots up, the epBlue server software starts automatically. If the server software is stopped while the PC is running, you must start the software manually before starting epBlue. To start the server software, select Start - Programs - Eppendorf - epBlue Server from the Windows Start menu.

To start epBlue, proceed as follows.

1. Double-click on the Eppendorf epBlue icon on the desktop, or select Start - Programs - Eppendorf - epBlue in the Windows Start menu.

 epBlue starts, and the login screen appears.

 ![Login Screen]

 If you have forgotten your password, please contact your administrator. He can set a new password for you (see Set up a new password on p. 124).

Once you are logged in as a user, you can change your own password at any time. To do so, select Tools - Account - Change Password from the main menu.

2. Enter your account name and your password.
3. Click on Login.
epBlue starts and the program window displays the Home tab.

The number and type of tabs on the left hand edge of the epBlue window depends on your user rights and your epBlue configuration level.

5.3.2 Logging out or exiting epBlue

You cannot log out of your account or exit epBlue while any of your applications are still running. If you need to log out or exit before your applications have finished, you must stop them manually (see The Control tab on p. 96).

Logout from your user account

To log out of your account, proceed as follows.

1. Save any changes you have made to your applications (see Saving the current application on p. 64) or to your labware (see The Labware tab on p. 99).
2. Select Tools - Account - Log out from the menu or click on the Logout button.

You are logged out of your account.

The login screen appears. A different user can now log in.
Exiting epBlue

To exit epBlue, proceed as follows.

1. Save any changes you have made to your applications (see Saving the current application on p. 64) or to your labware (see The Labware tab on p. 99).
2. Select File - Exit from the menu.

epBlue is closed.

5.3.3 General information on working with ID tracking

Only for an epMotion with barcode reader.

Creating an application

- You can switch the ID tracking on and off for every labware positioned on the worktable. To switch on the ID tracking, set the ID label option of the labware to Entry list or Manual scan.
- To track the IDs in an application, switch on ID tracking for both the source labware and destination labware.
- Switch on the ID label option for each labware that you want epBlue to generate an ID list for. Sample IDs are automatically transferred through intermediate labware.
- ID tracking can only be carried out with the Sample Transfer, Pool, Pool one Destination and Dilute commands.
- For Reagent Transfer the IDs are not tracked, but they are documented in the log and in an input list.
- You can combine two or more samples with IDs in a destination, e.g., using a Pool command.

Creating ID lists via epBlue

When the ID label option is switched on, epBlue creates at least one ID list for each labware in the application. Depending on the labware type and the process carried out with the labware, the generated ID lists are stored as a Input list or Result list.

<table>
<thead>
<tr>
<th>Labware type</th>
<th>Generated ID list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rack with source vessels</td>
<td>Input list</td>
</tr>
<tr>
<td>Rack with source and destination vessels</td>
<td>Input list and Result list</td>
</tr>
<tr>
<td>Rack with destination vessels</td>
<td>Result list</td>
</tr>
<tr>
<td>Plate with source locations</td>
<td>None</td>
</tr>
<tr>
<td>Plate with source and destination locations</td>
<td>Result list</td>
</tr>
<tr>
<td>Plate with destination locations</td>
<td>Result list</td>
</tr>
</tbody>
</table>

When it comes to the creation of ID lists, intermediate positions are treated as destination positions.

Generally, epBlue creates ID lists during the application run. If you abort the application run, the ID lists only contain the entries of the positions that have been processed up to that point.

An ID list always refers to one labware. The ID list contains a list header and the following data fields for each labware position used:
The plate ID is contained in the list header.

An ID list may contain several entries for a location. This is the case with the Result lists if samples with different IDs are combined in one destination location (pooled). For Input lists, there are 2 entries for each location if reagents with 2 IDs (e.g., one for the reagent type and one for the batch number) are used.

The ID lists are automatically saved in the epBlue database. You can export and import the ID lists in CSV or XML format.

Run

- ID lists for source and destination labware are called Input list and Result list, respectively. You can display the lists via the list administration.
- Input list and Result list can be used with the ID label setting entry list as Entry list in the following runs.
- Dependent on the labware used the following information is required or issued for the ID tracking:

<table>
<thead>
<tr>
<th>Labware</th>
<th>Plate</th>
<th>Rack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual scanning</td>
<td>Only one barcode per plate.</td>
<td>One barcode per tube. The rack itself does not carry a barcode.</td>
</tr>
<tr>
<td>ID lists</td>
<td>One barcode per plate and one barcode per well used.</td>
<td>One barcode per tube. The rack itself does not carry a barcode.</td>
</tr>
</tbody>
</table>

Example: You use a plate as destination labware and have configured manual scan. You then must scan the barcode of the plate at the start of the method. After the method is complete you obtain a Result list containing both the ID of the plate and the IDs and locations of the transferred samples.
5.4 The Home tab

5.4.1 Overview of the Home tab

epBlue always starts with the Home tab. This tab offers shortcuts to common tasks and allows you to access your recently used applications quickly.

Recent applications and common tasks

In the Recent Applications section you will find a list of the applications you have used recently.

<table>
<thead>
<tr>
<th>Recent Applications</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry List Test.dws</td>
<td>17.12.2009 15:35:11</td>
</tr>
<tr>
<td>Simple PCR.dws</td>
<td>17.12.2009 14:51:52</td>
</tr>
<tr>
<td>Eingabe PCR.dws</td>
<td>17.12.2009 11:16:45</td>
</tr>
<tr>
<td>10ml tubes to plate_w.dws</td>
<td>17.12.2009 11:16:11</td>
</tr>
<tr>
<td>PCR Cleanup 96.dws</td>
<td>17.12.2009 11:14:27</td>
</tr>
</tbody>
</table>
In the *Tasks* section you can select the most common tasks quickly and easily. Alternatively, all tasks are also available in the main menu.

Tasks

- **Open / run applications**
- **Create / edit applications**
- **Create / edit labware**
- **View / import / export ID list**

Icons in the Home tab

In the *Home* tab the following icons are available in the toolbar under the main menu.

- **New... New Application**: to create a new application
- **Open... Open Application / Open Labware**: to open an existing application or labware
- **Save (not active)**: to save changes to applications or labware
- **Print (not active)**: to print applications and logs
- **Logout**: to log out of your user account and exit the software

Alternatively, these functions are also available in the File menu.

5.4.2 Open recent application

This section describes how to open those applications you have used recently. To open other applications, please refer to the section describing general file operations in the File Window (see *The file window on p. 49*).

The applications you have used recently are displayed in the *Recent Applications* list in the *Home* tab.

To open an application you have used recently, proceed as follows.

1. Click on the application in the *Recent Applications* list.

 The application opens and the program window changes to the *Work* tab.

 You can now start or edit the application (see *The Work tab on p. 61*).
5.4.3 Open and manage barcode ID lists

Only for a epMotion with epBlue ID and barcode reader.

Depending on your user rights, you can open and manage barcode ID lists.

Data loss due to missing back-ups

The system saves ID lists in the system database.

- To avoid loss of data, save the system database regularly using the Backup function.

1. Click on View/Import/export ID list in the Tasks list. The ID List Management window opens. All the existing ID lists for your current user are displayed on the right-hand side of the window.

2. You can sort the existing lists according to date, user, type (input or result list) as well as according to the type of setting (manual or imported).

 For this, select the suitable setting from the respective fields under View Options.

 With the Clear button you can reset all the filter functions to their initial position again.

 A toolbar in the upper part allows you to view, export or delete existing lists, and to import new lists.

- View: shows the barcode list as a table.
- Import: you can select a path to open the list to be imported and load it to barcode management. The CSV and XML formats are supported.

Import

1. Press Import in the icon bar. This opens the Barcode Import window.

2. Select the file to be imported by selecting the path and click on the Open button. The ID List Exchange window appears.

3. This window contains information on the imported path, the file type (CSV or XML) and the barcode with which the list is encrypted.

 Rename the list under Name.

 All the individual positions with the respective barcode are listed in a table below.

4. Press Import.

 The file is now displayed in the list of the barcode management window.

Export

1. Select an existing barcode list and press Export.

2. Select a storage location via the path, select CSV or XML as the file type and then press Save.

 This opens a new window containing information on the exported list.

3. Press Export to complete the saving process.
Remove

- Select an existing barcode list and press Remove.
 The selected list is marked as deleted (only possible as Admin Lab).

When you delete an application, the ID lists which were created during the execution of this application, are also deleted.

5.5 The file window

5.5.1 Access to the file window

The file window allows you to open, create and edit applications, to manage your application files and folders, and to open some types of labware for editing.

The file window has two modes, depending on the way you access it: it can show either applications or labware files.

The basic procedures carried out in the file window are described in detail in the following sections.

To avoid loss of data it is recommended to perform regular data backups of all applications and labware files. To save data and to restore data from a previous backup, you must be logged in as an administrator (see p. 117).

The file window for application files

To access the file window for opening and running application files, choose one of the following ways. If you open an application this way, epBlue will go directly to the Run tab, where you can start the application on a compatible device connected to your system.

- Click on Open / run applications in the Tasks section of the Home tab
- or click on the Open icon in the icon bar and select Open Application,
- or select File - Open / run applications from the main menu.

To access the file window for creating or editing application files, choose one of the following ways. Any applications you create and open this way will be displayed in the Worktable, where you can edit them for use in your system.

- Click on Create / edit applications in the Tasks section of the Home tab
- or click on the New icon in the icon bar and select New Application,
- or select File - Create / edit applications from the main menu.

Further information on labware is described separately (see Labware on p. 189).
File window for labware files

The file window for labware files shows the labware available in your system.

To access the file window for opening and managing labware files, do one of the following:

- Click on Create / edit labware in the Tasks section of the Home tab
- or click on the Open icon in the toolbar and select Open Labware,
- or select File - Create / edit labware from the main menu.

5.5.2 Opening an application

To open an application that you want to run on a device, proceed as follows.

1. Open the file window (see Access to the file window on p. 49).
2. Select a user name in the user list on the left-hand side to gain access to this user’s directory (usually your own).
 The folders in the selected user directory are now displayed in the Folder list.
3. In the Folder list select the folder containing the required application.
 The applications in the selected folder are now displayed in the Applications list.
4. In the Applications list select the application you want to open.
 The properties of the selected application are displayed on the right-hand side.
5. To open the selected application, click on Open Application. The application opens and epBlue goes to the Work (see The Work tab on p. 61) tab.

If you opened the application via the Open / run applications command, epBlue goes directly to the Run tab, where you can start the application on a device connected to your system.

If you opened the application via the Create / edit applications command, epBlue switches to the Worktable, where you can edit and run the application.

Applications from other user folders are automatically opened in read-only mode and cannot be started. You first have to copy the applications to your own user folder to be able to edit and run them (see p. 54).

5.5.3 Creating a new folder in your user directory

Your user directory contains the applications that you can edit and run on the available devices. To organize your applications, you can store them in folders which you create in your user directory.

To create a new folder in your user directory, proceed as follows.

1. Open the file window (see Access to the file window on p. 49).
2. Select your user name in the User list on the left-hand side to gain access to your user directory.

All folders in your user directory are now displayed in the Folder list.

The properties of the selected user directory are displayed on the right-hand side.

3. To create a new folder click on New Folder or click on the Create new folder icon above the Folder list.
A dialog window opens.

4. Enter a name for the new folder. If required, enter a short description of the folder in the Comment field.

5. Click on Create.

The new folder has been created and is displayed in the Folder list.

5.5.4 Creating a new application

This section describes how to create a new empty application. Alternatively, you can duplicate an existing application (see Duplicating an open application on p. 63) and edit the duplicate. This allows you to create several similar applications quickly and efficiently.

This function is only available if you have the necessary user rights.

To create a new application, proceed as follows.

1. Open the file window (see Access to the file window on p. 49).

2. Select a user name in the user list on the left-hand side to gain access to this user's directory (usually your own).

The folders in the selected user directory are now displayed in the Folder list.

The properties of the selected user directory are displayed on the right-hand side.

You can create a new application either in the top level of the user directory, or in a folder within the user directory.
3. To create a new application at the top level of the user directory, check that the user has been selected in the User list, then right click in the Applications list and select New Application in the context menu or click on the Create new application icon above the Applications list.

![Application list example]

4. To create a new application in a folder within the user directory, select the folder in which you want to create the new application.

 The applications in the selected folder are now displayed in the Applications list. The properties of the selected folder are displayed on the right-hand side.

![Folder selection example]

5. To create a new application in the selected folder, click on New Application in the properties section, or right-click in the Applications list and select New Application from the context menu, or click on the Create new application icon above the Applications list.

![Application creation example]

A dialog window opens.

6. Enter a name for the new application. If required, enter a short description of the application in the Comment field.

7. Click on Create.

 The new application has been created and is displayed in the Applications list. If you have created the application at the top level of the user directory, the user directory is now also included in the Folder list. Its name displayed in brackets.
You can now open the new application (see Opening an application on p. 50) and edit it in the Work tab (see The Work tab on p. 61).

5.5.5 Copying applications and folders from other user directories to one's own

The ep directory contains standard Eppendorf applications. These applications and all applications in other user directories are read-only and cannot be edited or started directly. However, you can copy them to your own directory in order to edit them or to run them on a device. In the same way, you can copy existing applications from other user's directories and adapt them to your own requirements.

To copy an application or folder from another user's directory to your own, proceed as follows.

1. Open the file window (see Access to the file window on p. 49).
2. In the User list select on the left-hand side the user directory containing the application or folder you want to copy. The folders in the selected user directory are displayed in the Folder list.
3. To copy a folder, select the folder in the Folder list, click on the Edit Folder icon above the Folder list and select Copy or right click on the folder and select Copy in the context menu. The folder is copied into the computer clipboard.
4. To copy an application, select the folder which contains the required application. The applications in the selected folder are now displayed in the Applications list.
5. In the Applications list select the application you want to copy. The properties of the selected application are displayed on the right-hand side.
6. Click on the Edit Folder icon above the Applications list and select Copy.
7. In the User list select on the left-hand side your own user directory.
8. To insert a copied folder into your user directory, click on the Edit Folder icon above the Folder list and select Paste. The copied folder is inserted into your user directory.
9. To insert a copied application, select the folder into which you want to insert the application. The applications in the selected folder are now displayed in the Applications list.
10. Click on the Edit Folder icon above the Applications list and select Paste.
The copied application is inserted into the selected folder in your own user directory.

You can now run or edit the application or applications in the copied folder (see "The Work tab on p. 61").

5.5.6 Editing folder and application properties

To edit the properties of a folder or application, proceed as follows:

1. Open the file window (see "Access to the file window on p. 49").
2. To edit the properties of a folder select the folder in the Folder list.
3. To edit the properties of an application select it in the Applications list.
 The properties of the selected folder or application are displayed on the right-hand side.
4. Click on Properties.
 A dialog window opens. You can now edit the following properties:
 • Name: The name of the folder or application.
 • Comment: A short description of the folder or application.
 • Read only (for applications): If this option is active, the application can be opened and started, but it cannot be edited, to protect it against accidental changes.
 You can also call the properties via the Cut+Copy+Paste button.
5. To save the changes, click on Save.
6. To exit the properties without changes, click on Cancel.

5.5.7 Deleting applications and folders

If you delete an application with ID tracking activated, all the ID lists which were created when the application was executed will also be deleted.

If the worktable of the copied application does not match that of the connected epMotion, you will not be able to execute the application. In this case, save the application with Save as... under a new name with the suitable worktable.

Barcode

You can delete applications and folders from your own user directory. The applications and folders in the ep directory cannot be edited or deleted.

To delete applications or folders, proceed as follows.

1. Open the file window (see "Access to the file window on p. 49").
2. To delete a folder select the folder in the Folder list and click on the Delete icon above the Folder list.

3. To delete an application select it in the Applications list and click on the Delete icon above the Applications list.

A warning message appears.

4. To confirm, click on Yes. The selected folder or application is deleted.

5.5.8 Import applications

You can import applications from your hard disk or from a USB storage device into epBlue. The following file formats can be imported:

- method files for epMotion (file extension *.dws)
- older method files (file extensions *.ws or *.lhs)
- Files exported with epBlue (file ending *.export)

To import applications, proceed as follows:

1. Open the file window (see Access to the file window on p. 49).
2. Select the target directory and click on the Import Applications icon above the Folder list.
3. Alternatively click on the Import Applications icon above the Applications list. The import window opens.

![Import Applications Window](image)

4. Click on Add and select the files you want to import from your hard disk or USB storage device. The selected applications are listed in the import window.

![Import Applications Window](image)

5. Click on Remove to remove individual files from the selection list. Click on Clear to clear the selection list.

6. Click on Import.
 Another import window opens. The target folder and the corresponding user are specified again at the top of the page. All the files to be imported are listed and automatically selected.

7. Deselect the files which should not be imported.
8. Click on Import.
 The applications are imported into eBlue. An import summary appears in a window.

![Import window]

9. Click on Finish to complete the process.

5.5.9 Exporting applications

You can export application files to your hard disk or to a USB storage device.

To export applications, proceed as follows.

1. Open the file window (see Access to the file window on p. 49).
2. To export all applications to a folder select the folder in the Folder list and click on the Export Selected Applications icon above the Folder list.
3. To export an individual application select the application in the Applications list and click on the Export Selected Application icon above the Applications list.
4. Select a target folder for the application files, click on OK and confirm the message in the new window with export. In this window you can deselect the files again and re-enter the target folder in the upper part.
 The files are exported to the specified folder. An export summary appears in a window.
5. Click on Finish to complete the process.

Hint!

If you import applications from older software versions, it may happen that the way the worktable is displayed in epBlue does not correspond to your device configuration. Save the application with Save as under a new name to resolve this problem.

Hint!

The required labware for applications is also imported.

Hint!

Exported epBlue applications cannot be used for the control panel.
Methods and labware exported from this epBlue version cannot be imported into older epBlue versions (10.x).
5.5.10 Open labware for editing

This section describes how to open a labware file in the file window. For a more detailed description of the editing steps and labware types that can be edited see the description of the Labware tab (see The Labware tab on p. 99).

The import and export of labware files is described elsewhere (see Importing and exporting labware combinations on p. 247).

This function is only available if you have the necessary user rights.

To open labware for editing, proceed as follows.

1. Open the labware file window (see Access to the file window on p. 49).
2. In the Folder list on the left-hand side select the labware folder containing the labware you want to edit.
 If there are subfolders, these are displayed in the Subfolder list.
3. If required, select the subfolder.
 The labware in this folder is displayed in the Labware list.
4. In the Labware list select the labware you want to open.
 The properties of the selected labware are displayed on the right-hand side.
5. To open the selected labware, click on Open Labware.
 The labware opens and the program window changes to the Labware tab.

You can edit the labware, or create new labware or labware combinations for use in your applications. You can equip racks or modules with tubes (see p. 104), and you can equip reservoir racks with various reservoirs and equipped modules (see p. 107).
5.5.11 Deleting a labware combination

Depending on your user rights, you can delete labware combinations created by yourself or by other users in your system. Labware identified in the Labware Properties section as Eppendorf Standard Labware cannot be deleted.

To delete a labware combination you have created, proceed as follows.

1. Open the labware file window (see Access to the file window on p. 49).

2. In the Folder and Subfolder lists select the labware folder containing the labware you want to delete.

 The labware in this folder is displayed in the Labware list. Eppendorf Standard Labware is displayed in blue, it cannot be deleted.

3. Select the labware you want to delete and click on the Delete icon above the Labware list.

 A warning message appears.

4. To confirm, click on Yes.

 The labware is deleted.
5.6 The Work tab

5.6.1 Overview of the Work tab

epBlue automatically changes to the Work tab if you have opened an application via the Home tab or the file window. You can also access the empty Work tab by clicking with the mouse. In the Work tab you can edit your own applications and start them on the available devices.

If the Work tab is empty when opened, you first have to open an application via the Home tab or the file window. (see Opening an application on p. 50)

List of open applications

On the left-hand side of the Work tab a list with all open applications is displayed. Several applications can be open at the same time and can be edited or run in parallel. The current application is highlighted. To switch between the applications, click on the application names in the list.
Tabs for editing and running epMotion-applications (methods)

If you have opened a method (i.e. an application for epMotion), the Work tab displays several tabs:

- **Worktable**: In the Worktable tab you equip your worktable with the labware required for the method (see Worktable tab - equip the worktable on p. 66).
- **Procedure**: In the Procedure tab you define the sequence of the commands to be executed when the method is run (see Procedure tab - defining a procedure on p. 72).
- **Run**: With the Run tab you can start your method on one or several devices available in your system (see The Run tab on p. 89).
- **Control**: In the Control tab you can monitor and control the devices on which your method is currently running (see The Control tab on p. 96).
- **Logs**: In the Logs tab you can view and print the logs of the respective method.

Icons in the Work tab for epMotion applications (methods)

When you have opened a method (i.e. an application for epMotion), the Work tab displays the following icons in the toolbar below the main menu:

- **New... New Application**: to create a new application for editing
- **Open... Open Application/Labware**: to open an existing application/labware
- **Save**: to save changes to your methods
- **Print**: to print a report
- **Logout**: to log out of your user account and exit the software
- **Copy** (only active in the Procedure tab): to copy objects (commands) to the clipboard of the computer.
- **Paste** (only active in the Procedure tab): to insert objects (commands) from the clipboard of the computer.
- **Delete** (only active in the Procedure tab): to delete a selected object (command).
- **CSV Import** (only active in the Procedure tab): to import commands from a CSV file to the Procedure.
- **Check Method** (only active in the Procedure tab): to check method parameters.
- **Start Method**: to start a method on a device.

Alternatively, these functions are also available in the File menu.

Additional information on the selection of tasks, e.g., opening or creating methods or managing method files and folders, can be found in the detailed description of the Home (see The Home tab on p. 46) tab and in the file window (see The file window on p. 49).
Duplication an open application

If an application is read-only or is running on a device, it is protected and cannot be edited. However, you can create a duplicate which you can edit.

To create a duplicate of an open application, proceed as follows.

1. Select the application in the list of open applications on the left-hand side.
2. Right-click on the application name and select Duplicate from the context menu.

The duplicate application is created and displayed in list of open applications. The file name of the duplicate application is a copy of the name of the original application file plus a number in brackets. If you create more than one duplicate of the same original application, the duplicates are numbered consecutively.

You can now open the duplicate application or edit its properties (see The file window on p. 49).
Saving the current application

To save the current application, proceed as follows.

1. Select the application in the list of open applications on the left-hand side of the Work tab. The current application is highlighted in darker blue.

2. To save the application under the same name, click on the Save icon, or select File - Save from the main menu, or right-click on the application name and select Save from the context menu.

3. To save the application under a new name, select File - Save As from the main menu, or right-click on the application name and select Save As from the context menu.

A dialog window opens.

4. Enter a file name and click on Save. The application is saved in your user directory.

Printing applications and logs

You can print a description of the current application, e.g., the worktable assignment and procedure of commands defined in a method.

When the application has been executed on a device connected to your system, you can also print the logs of every individual run. The logs record every program step carried out by the device (see Reading logs on p. 98).

To print an application or its logs, proceed as follows.

1. Select the application in the list of open applications on the left-hand side of the Work tab. The current application is highlighted. To print the method, select the worktable. To print a log of the method, select the Logs tab.

2. Click on the Print icon, or select File - Print from the main menu.
3. The Preview window opens.

In the Preview window, the following icons are available (from left to right):

- **Search**: to search the document text.
- **Print**: to select a printer and print the document.
- **Quick Print**: to print the document on the standard printer configured in your system.
- **Page Setup**: to change the page setup before printing.
- **Scale**: adjust the size of your printout here.
- **Hand Tool**: to navigate by dragging the document up or down with the mouse.
- **Magnifier**: to toggle the zoom factor between 100% and full-page view.
- **Zoom / Zoom Out / Zoom In**: to adjust the zoom factor.
- **First / Previous / Next / Last Page**: to navigate through the document pages.
- **Multiple Pages**: to specify the number of pages displayed in the Preview window.
- **PDF**: to save the printout as a PDF in a folder you have selected.

4. Print or save the document as required, using the icons in the Preview window, as described above.

5. To exit the preview, close the Preview window.
5.6.2 Worktable tab - equip the worktable

In the Worktable tab you equip worktable of the epMotion with the labware required for the method.

To go to the Worktable tab select the Work tab on the left-hand side of the program window and select the Worktable tab.

The Worktable tab is divided into 3 sections.

The Worktable (section 1) is displayed in the top right section of the Worktable tab. It shows the worktable assignment for the active method. You can edit the worktable with the mouse, add and remove labware or move labware to a different location on the worktable.

The Labware list (section 2) is displayed in the bottom section of the Worktable tab. It contains the available labware that you can place on the worktable.

The Placement list (section 3) is displayed in the top left section of the Worktable tab. It shows a list of all occupied worktable locations and the labware placed at each location.
Positioning labware on the worktable

To position labware on the worktable, proceed as follows.

1. In the **Labware Type** list select the type of labware you want to use (e.g., "Plates"). If there are subgroups they are displayed in the **Sub-Type** list.

2. In the **Sub-Type** list select the subgroup you want to use (e.g., "mtp96"). The available labware of this type is displayed in the **Labware** list.

3. In the **Labware** list select the labware you want to position on the worktable (e.g., "CO_MTP_360_1"). Some information on the selected labware is displayed on the right-hand side.

4. To position the labware on the worktable, press the left mouse button and keep it pressed, dragging the labware upwards from the list.

Hint!

While you are dragging the labware, it is attached to the mouse pointer by its upper left-hand corner. To position the labware on the worktable, direct the mouse pointer (not the center of the labware icon) to the intended location. The mouse pointer carries a small "+" (plus) symbol if the labware can be positioned at the current location.

5. Drag the labware to its intended location on the worktable and drop it there by releasing the mouse button.
A dialog window opens which allows you to change the settings for this labware.

6. If required, edit the name of the labware in the *Name* field.

7. If the optical sensor is to perform liquid detection at this location during the method, then set the desired option.
 The following options are available:
 - **Off**: Liquid detection is switched off at this location. If you use this option, click in the *Volume* field and specify a volume for the labware.
 - **Random Access**: The optical sensor performs liquid detection at a few randomly-selected positions of this labware.
 - **All Positions**: The optical sensor performs liquid detection at all positions of this labware. It is not recommended to select this option for racks and plates with 96 positions, as this is time-consuming.

 If required, you can always edit these settings again later (see *Editing labware properties on the worktable on p. 71*).

8. Only for an epMotion with epBlue ID and barcode reader: You can select whether a barcode ID should be assigned to the labware. There are 3 ways of doing this:
 - **Manual scan**: In the *Run* section you will be requested to manually read the used positions with the barcode reader.
 - **Entry list**: In the *Run* section you will be requested to select an already existing barcode list for the allocation. For control purposes, you will be requested at the start of the method to read the barcode of the first position in the list.
 - **None**: No barcode ID is assigned to the labware.

9. Click on *OK* to confirm the settings.
 The labware is positioned in the location.
10. Proceed in the same way to equip the other locations on the worktable. The labware on the worktable is also displayed in the Placement list on the left-hand side of the Worktable tab.

When positioning labware, please note the following restrictions:

- **all A locations**: no ReservoirRack.
- **Location B0**: not all labware items are suitable.
- **all C locations**: no tips.
- **Vac Lid** can only be placed in gripper position.

To check whether a particular labware item can be positioned in a location, try dragging the labware over that location and observe the shape of the mouse pointer: the labware can be positioned only if the mouse pointer carries a “+” (plus) symbol.

Stacking labware at a location

You can stack certain labware components at a location one above the other, e.g., selected plates or a height adapter and a plate.

In a location you can stack a maximum of five predefined plates from Eppendorf, in the vacuum unit you can stack four labware components. The maximum stacking height is 126 mm. The following plates can be stacked in a location:

- EP_pDNA_96_MTP
- EP_TT_PCR_150
- EP_TT_PCR_40
- EP_DWP_1200
- EP_pDNA_96_DWP

For plate stacking, you must select the same setting for the **ID Label** option for all plates.
To stack labware at a location, the specifications (geometry, name, bottom tolerance etc.) of the plates must be the same.

Additional labware suitable for stacking is available for download in the VIP section at www.epMotion.com. To download and import this labware, carry out a labware update.

Dispensing operations are not possible from a plate stack. Stacks may not be transported by the gripper. Individual plates are removed from the stack for transport. The optical sensor can perform location detection. Liquid detection is not possible.

When stacking plates, ensure that the filling level is adapted. The working volume should not be exceeded.

When stacking labware, always proceed in just the same way as when normally positioning individual labware components (see Positioning labware on the worktable on p. 67).

To stack labware at a location, proceed as follows.

1. Select and position the labware which is to be located in the bottom location (e.g., a height adapter.
2. Select and position the labware which is to be located at the same top location (e.g., a plate). Proceed in just the same way as when positioning the bottom labware component.

The two labware components are displayed in the location. The number of stacked items is displayed in brackets next to the location name.

The stacked labware components are also displayed in the Placement list on the left-hand side of the Worktable tab.

<table>
<thead>
<tr>
<th>Placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>Index: A2</td>
</tr>
</tbody>
</table>

| A3 |
| Samples |
| 24 |
| Index: A3 |

| B2 |
| Tube-1 |
| 96 |
| Index: B2 |

| B3 |
| myXXL-1 |
| 85 |
| Index: B3 |

| B4 |
| Height-1 |
| 85 |
| Index: B4 |
Editing labware properties on the worktable

You can edit the labware properties also for labware already placed onto the worktable.

1. Double click on the labware on the worktable or right click on the labware in the Placement list and select Properties from the context menu.

2. To edit the properties of stacked labware further down in the stack (e.g., a height adapter), right click on the labware in the Placement list and select Properties from the context menu. This labware can only be accessed via the Placement list.

 A dialog window opens which allows you to change the settings for this labware.

Remove labware from the Worktable

1. Right-click on the labware on the worktable or right-click on the labware in the Placement list and select Properties from the context menu.

2. Or drag the labware from its location on the worktable to the waste position with the mouse, and drop it there.

 The labware is removed from the worktable and also from the Placement list.
5.6.3 Procedure tab - defining a procedure

In the Procedure tab you can define the sequence of the commands to be executed when the method is run. It is recommended to first equip the worktable with the required labware before changing to the Procedure tab (see Worktable tab - equip the worktable on p. 66).

To go to the Procedure tab select the Work tab on the left-hand side of the program window and select the Procedure tab.

The Procedure tab is divided into 4 sections.

The Worktable (section 1) is displayed in the top right section of the Procedure tab. It shows the current worktable assignment for the active method. To edit the worktable you have to change to the Worktable tab (see Worktable tab - equip the worktable on p. 66).

The Procedure list (section 2) is displayed on the left-hand side of the Procedure tab. It shows the procedure as a list of commands, in the order in which they will be executed.

The Parameter section (section 3) is displayed in the bottom right section of the Procedure tab. It shows the parameters for the command which is currently selected in section 2. You can edit these parameters.

The Commands section (section 4) is displayed on the left-hand side under the Procedure list. It contains icons for all the commands you can use to define a procedure.
Overview of the available commands

All available commands are displayed as icons in the Commands section under the Procedure list.

This section provides you with a brief overview of the commands. Details on all commands and their parameters are included in the reference list (see Reference list of commands and parameters on p. 82).

Tracking a sample using a barcode ID is only possible with the Sample Transfer, Pool, Pool One Destination and Dilute commands. Use the Reagent Transfer command for ID-marked reagents. Reagent IDs are recorded in the Input list and Log but not in the result list. Basic information on barcode IDs can be found in the chapter “General information on working with ID tracking” (see p. 44).

The following commands are available for defining a procedure.

- **Number of Samples**: Use the Number of Samples command to specify how many samples are to be processed in the subsequent steps of the procedure. The command can be used several times in a method to change the number of samples during the sequence of the procedure.
- **Sample Transfer**: Use the Sample Transfer command to transfer samples from different locations of the source vessel labware to different locations of the destination vessel labware.
- **Reagent Transfer**: Use the Reagent Transfer command to transfer a reagent from one or different locations of the source vessel labware to different locations of the destination vessel labware.
- **Dilute**: The Dilute command is a modified Sample Transfer command making it easier to carry out diluting series. A defined volume is transported from one well to the next several times by means of pipetting.
- **Pool**: The Pool command is used to transfer liquids from several source vessel locations to a single destination vessel location. For example, the contents of several source vessel labware wells can be pooled in a new destination vessel labware well.
- **Pool One Destination**: The Pool One Destination command is used to transfer liquids from several source vessel locations to a single destination vessel location. This command is a simplified Pool command.
- **Mix**: Use the Mix command to mix liquids at one location.
- **Vacuum**: Only on epMotion 5075 VAC. Use the Vacuum command to set the vacuum in the vacuum unit.
- **Transport**: The Transport command uses the gripper to transport labware to another destination location or to the vacuum unit (epMotion 5075 VAC). Tips, racks, thermoadapters and height adapters cannot be transported. Semi-skirted and unskirted PCR plates can only be transported when combined with the thermoblock.
- **Temperature**: Only for epMotion 5075 with thermal module. The Temperature command is used to specify the temperature of a thermal module.
Adding a command to the program

To add a command to the program, proceed as follows.

1. To **insert** a command anywhere in the program (either in the procedure or at the end) click on the Command icon in the Command section in the Procedure tab, e.g., on the Sample Transfer icon, drag the command to the top and drop it in the desired procedure location.

2. To **append** a command to the end of the procedure, double-click on the command icon in the Command section in the Procedure tab, e.g., on the Sample Transfer icon. The command is added to the procedure. The command parameters are displayed in the Parameter section of the Procedure tab.

3. Click on the Parameters, Options, Mix and Liquid Type tabs in the Parameter section to edit the command parameters as required by your method (see *Editing the parameters and options of a command on p. 76*).

 The example shows the Sample Transfer command. Other commands can have different options in the Parameter section in the Procedure tab. Details on all commands and their parameters are included in the reference list (see *Reference list of commands and parameters on p. 82*).

4. Complete the procedure by adding other commands in the same way. In addition to adding commands in the ways described above, you can also move a command up or down within the procedure (see p. 74), copy a command including its parameters and options (see p. 75), or delete a command from the procedure (see p. 75).

Moving a command up or down in the procedure

To move a command to a different position in the procedure, proceed as follows.

1. In the Procedure list of the Procedure tab click on the command you want to move, drag it up or down with the mouse and drop it at the new location. The command is moved to the new location.
Duplicating a command

To duplicate a command, including its parameters and options, and insert the duplicate into the procedure, proceed as follows.

1. In the Procedure list of the Procedure tab select the original command and make sure that the parameters and options have been defined as necessary.
2. Click on the Copy icon, or right-click on the command and select Copy from the context menu.
3. Select the command below the position in which you want to insert the duplicate, right-click and select Paste before from the context menu.

The command is duplicated and the duplicate is inserted at the chosen position. You can now edit the parameters of the original command and the duplicate independently of each other.

Removing commands from the procedure

To remove one or several commands from the procedure, proceed as follows.

1. In the Procedure list of the Procedure tab select the command you want to remove.
2. To select a sequence of commands, click on the first command in the sequence, then press the Shift key on the keyboard and click on the last command in the sequence.
3. Press the **Delete** key on the keyboard, or right-click on the command or sequence of commands and select **Delete** from the context menu.

A warning message appears.

4. To delete, click on **OK**.
 The command or sequence of commands is removed from the procedure.

Editing the parameters and options of a command

Each command has its own set of parameters, which you can edit at any time while you are creating or editing a procedure.

To edit the parameters and options for a command, proceed as follows.

1. In the **Procedure** list of the **Procedure** tab select the command you want to edit, e.g., a **Sample Transfer** command.
 The command parameters are displayed in the **Parameter** section.

2. Select a dispensing tool from the **Pipet. Tool** list. If you are using filter tips, activate the **Filter Tips** option.

3. First set the volume to be dispensed (**Volume**) and select the **Transfer Type** (**Pipette** or **Multidispense**).
4. Select the source vessel (Source) and the destination vessel (Destination) for the command (see Define the source vessel (Source) and destination vessel (Destination) for a transfer on p. 77).

5. Specify the Pattern for the command (see Editing the pattern for a Transfer command on p. 78)

6. To specify further options for the command (e.g., Liquid Type, settings for mixing and changing tips), click on the Options, Mix and Liquid Type tabs in the Parameter section to edit the parameters according to the requirements of your method.

7. To discard the changes, click immediately on Discard Changes under the Parameter section before selecting a different command in the Procedure list.

8. To accept the changes, click on Apply Changes under the Parameter section or select a different command in the Procedure list.

The example shows the Sample Transfer command. Other commands may have different options in the Parameter section in the Procedure tab. For a detailed description of the available parameters and options for each command, see the reference list of commands (see Reference list of commands and parameters on p. 82).

Define the source vessel (Source) and destination vessel (Destination) for a transfer

You can define up to 4 source vessel and destination vessel locations for each Transfer command. To use labware as source or destination for a Transfer command the labware must first have been positioned on the worktable (see Positioning labware on the worktable on p. 67). Within one Transfer command you can define up to 4 labware locations for source vessels and up to 4 locations for destination vessels. The second and all further labware locations must be compatible with the first labware selected.

There are 2 options for defining source and destination vessels for a Transfer command:

- You can select source and destination vessel labware from a list with labware objects positioned on the worktable (see p. 77).
- Immediately after adding a command to the procedure you can define a source and destination vessel via mouse click (see p. 78).

Selecting source vessel and destination vessel from a list

You can select up to 4 source vessel and destination vessel locations by selecting labware from a list of labware items positioned on the worktable. To do so, proceed as follows.

1. In the Procedure list of the Procedure tab select the command you want to edit, e.g., a Sample Transfer command.

2. In the Parameter section select the first source vessel labware from the list.

 The list for the next location becomes active automatically. The second list shows only labware on the worktable which is compatible with the first selected labware location.

3. Specify further source vessel locations in the same way, if required.

4. Select the destination vessel labware in the same manner.

The source vessel and destination vessel locations for this command are active immediately.
Clicking on source and destination with the mouse

You can define up to 4 source vessel and destination vessel locations by clicking with the mouse (only possible immediately after you have added the command to the procedure). To do so, proceed as follows.

1. Add a command to the procedure, e.g., a Sample Transfer command (see Adding a command to the program on p. 74).
2. Immediately after adding the command, move the mouse over the worktable. The mouse pointer changes into a dispensing tool symbol.
3. Click on the first source vessel labware on the worktable. The selected source vessel labware is highlighted in blue and the Source list in the Parameter section displays the name of the labware at the top.
4. If required, select further source vessel locations by clicking with the mouse (up to 4 locations). They are also highlighted in blue and displayed as source vessel locations in the Parameter section.
5. To define the destination vessel labware, press the Ctrl key on the keyboard and keep it pressed while clicking on the first destination vessel labware on the worktable. The selected destination vessel labware is highlighted in red and the Destination list in the Parameter section displays the name of the labware at the top.
6. If required, select further destination locations by holding the Ctrl key and clicking with the mouse (up to 4 locations). They are also highlighted in red and displayed as destination vessel locations in the Parameter section.

The source and destination locations for this command are active immediately. You can edit them later by selecting different locations from the lists in the Parameter section (see Selecting source vessel and destination vessel from a list on p. 77).

Editing the pattern for a Transfer command

The following pattern types are available for Transfer commands:

- **Standard pattern** (only for Sample Transfer commands): A simple standard pattern which can be based on rows or columns.
- **Regular pattern with automatic pattern detection** (for all commands except when using ReservoirRack): a standard pattern which is not strictly based on rows or columns, e.g., for pipetting a sample from the first column of a source vessel plate 1:1 to the second column of a destination vessel plate. To define this pattern, you need to specify only the first few positions. The pattern is then recognized and completed automatically.
- **Irregular pattern** (for some commands (see Reference list of commands and parameters on p. 82)): irregular pattern for a plate or module rack in which the source vessel and destination vessel locations can be defined freely. Automatic pattern detection is not possible. all locations must be specified manually (see Creating an irregular pattern for a plate or a rack on p. 81).
To edit the pattern for a Transfer command proceed as follows.

1. In the Procedure list of the Procedure tab select the command you want to edit (e.g., a Sample Transfer command) and define the source and destination vessel labware (see Define the source vessel (Source) and destination vessel (Destination) for a transfer on p. 77).

2. If the Sample Transfer command requires a standard pattern either by rows or columns, place a tick in the Standard checkbox and select the row-wise or column-wise option.

3. To define a regular pattern that is not row-wise or column-wise, click on the Pattern button. The Pattern window opens.

4. If there is a previous pattern that you do not want to use, click on the New Pattern button to remove it.

5. In the source vessel labware click on the first location from which liquid is to be aspirated (e.g., location 1A).
6. In the destination vessel labware click on the location (or locations) to which the first liquid volume is to be transferred (e.g., location 2A).

7. In the source vessel labware click on the second location from which liquid is to be aspirated (e.g., location 1B).

8. In the destination vessel labware click on the location (or locations) to which the second liquid volume is to be transferred (e.g., location 2B).

epBlue will attempt to recognize the intended pattern and will highlight the next position in gray.

9. If the recognized pattern matches your requirements, click on OK to confirm and close the Pattern window. The pattern will be completed automatically up to the defined number of samples.

10. If you wish to discard the recognized pattern, click on New Pattern and start again.

11. To check a defined pattern, click on Show Process in the pattern window.

The pattern sequence is displayed and the corresponding source and destination locations are displayed in the same color.

For a description of all available commands and their parameters, see the reference list of commands (see Reference list of commands and parameters on p. 82).

Alternatively, you can create an irregular pattern for a plate or ReservoirRack (see Creating an irregular pattern for a plate or a rack on p. 81).
Creating an irregular pattern for a plate or a rack

An irregular pattern for a plate or ReservoirRack is a pattern in which the source and destination vessel locations can be defined freely. Automatic pattern detection is not possible, all positions must be specified manually. Alternatively, you can define a standard pattern (row-wise or column-wise) or a regular pattern with automatic pattern detection (see Editing the pattern for a Transfer command on p. 78).

To create an irregular pattern for a plate, rack or ReservoirRack, proceed as follows.

1. In the Procedure list of the Procedure tab select the command you want to edit (e.g., a Sample Transfer command) and define the source and destination vessel labware (see Define the source vessel (Source) and destination vessel (Destination) for a transfer on p. 77).

2. In the Parameter section in the Irregular Pattern checkbox under the list with the source and/or destination vessel labware place a tick as required.

3. Click on the Pattern button.

The Pattern window opens.

The source and destination vessel labware is displayed. The source vessel labware is displayed on the left-hand side highlighted in blue. The destination vessel labware is displayed on the left-hand side highlighted in red.

4. In the source vessel labware click on the first location from which liquid is to be aspirated.
5. In the destination vessel labware click on the location to which the first liquid volume is to be transferred.

6. Select all locations of the intended pattern in the same way, alternating between source vessel and destination vessel labware.

7. To confirm the pattern and close the Pattern window, click on OK.

8. If you wish to discard the pattern, click on New Pattern and start again.

9. To check a defined pattern, click on Show Process in the pattern window.

 The pattern sequence is displayed and the corresponding source and destination vessel locations are displayed in the same color.

 For a description of all available commands and their parameters, see the reference list of commands (see Reference list of commands and parameters on p. 82).

Checking the method or individual commands (parameter test)

The parameter test allows you to check whether all required parameters are set, either for the entire method or for individual commands or a sequence of commands.

1. To check the parameter settings of the current method, click on the Check Application icon in the toolbar of the Work (see p. 62) tab or select Edit - Check Application from the main menu or right-click on a created command and select Check Application from the context menu.

2. To check an individual command or a sequence of commands, right-click on the command and select Check from the context menu or select Edit - Check Commands from the main menu.

 A message window opens to inform you if a parameter error was found. Correct the error and repeat the check until all errors have been corrected.

Importing commands from a CSV file

When working with biological material (e.g., protein solutions, nucleic acid solutions), it may be necessary to transfer defined quantities of different samples from various parent solutions to a target container in order to adjust the concentration (thus creating standards). The quantities of sample material that must be transferred can be determined by physical measurements (e.g., by using spectroscopic methods, enzymatic analysis, or chemical methods), and the resulting quantities can then be listed in a table.

 To import a table in CSV file format, select Edit - Import from CSV from the menu.

 For details, please refer to the appendix (see Importing commands from a CSV file on p. 242).

5.6.4 Reference list of commands and parameters

This reference list contains all available commands and their parameters and options. Further details and specialized information can be found in the appendix.

 You can use these commands to define a procedure (see Procedure tab - defining a procedure on p. 72).
General configurations for Transfer commands

The following general parameters and options are used for Transfer commands. Click on the Parameters, Options, Mix and Liquid Type tabs in the Parameters section to edit the command parameters as required by your method.

Some parameters may differ or may not be available for individual commands. In this case please find additional details in the section about the corresponding Transfer command: Sample Transfer (see p. 84), Reagent Transfer (see p. 85), Dilute (see p. 85), Pool (see p. 86) and Pool One Destination (see p. 86).

Parameter

• Pipet Tool / Filter Tips: select the dispensing tool you want to use from the list. If you are using filter tips, activate the Filter Tips option.
• Volume: enter the volume to be transferred in each step. The volume is aspirated or dispensed according to the transfer types specified below.
• Transfer type
 – Pipette: the volume set above is aspirated or dispensed in each step.
 – Multidispense: the volume set above is dispensed in each multidispense step.
 – Multi aspirate: the volume set above is aspirated in each multi aspirate step.
• Source/Destination: select the source vessel labware and destination vessel labware from the worktable allocation (see Define the source vessel (Source) and destination vessel (Destination) for a transfer on p. 77).
• Pattern: the pattern is used to specify aspiration and dispensing positions within this command.
 – Standard pattern: if the command requires a standard pattern that is either row-wise or column-wise, check the Standard checkbox and select the row-wise or column-wise option.
 – Regular pattern with automatic pattern detection: to define a regular pattern that is not row-wise or column-wise, click on the Pattern button and define the intended pattern (see Editing the pattern for a Transfer command on p. 78).
 – Irregular pattern: to create an irregular pattern for a plate or a ReservoirRack, check the Irregular Pattern checkbox below the list of source and/or destination vessel labware as required. Then click on the Pattern button and define the intended pattern (see Creating an irregular pattern for a plate or a rack on p. 81).

Options

• Aspirate from bottom: select if the liquid is to be aspirated from the bottom of the well.
• Elution from filter: select if the liquid is to be aspirated from a PCR Cleanup filter plate.
• Dispense from top: select if the liquid is to be dispensed from the top edge of the well.
• Change tips: select one of the available options to specify when the tips are to be changed.

Mix

• Mix before aspirating / Mix after dispensing: activate the relevant option if the liquid is to be mixed before aspiration or after dispensing. To mix the liquid, it will be aspirated into the tip and dispensed back into the same well.
• No. of cycles: set the required number of mixing cycles.
• Speed: set the mixing speed.
• Volume: set the volume that is to be aspirated and dispensed during the mixing process.
• **Fixed height:** activate this option if you wish to use fixed height positions for mixing, and set the height values for aspiration and dispensing. The height is measured between the tip and the bottom of the well.

This option should only be used with filling levels below the volume of the well. With greater filling volumes, liquid can be forced out of the tube or well!

Liquid Type

• **Standard Liquid Type:** select the liquid type which most closely resembles the physical properties of the liquid you want to transfer.

• **Change Parameters:** to change the settings for the selected liquid type for this command, activate this option and set the values according to your requirements.

To restore the default settings for the selected liquid type, click the **Set Default** button.

Number of Samples

Use the **Number of Samples** command to specify how many samples are to be processed in the subsequent steps of the procedure. It applies to all commands until the next **Number of Samples** command in the procedure. The command can be used several times in a method to change the number of samples during the sequence of the procedure.

Dependent on the type and purpose of the following commands, the **Number of Samples** command has different effects:

• **Sample Transfer:** number of samples picked up by the source vessel plate.

• **Reagent Transfer:** number of wells of the destination vessel plate into which the reagent is dispensed.

• **Dilute:** number of samples to be diluted.

• **Pool** and **Pool One Destination:** Number of wells in the source vessel plate from which liquid is aspirated.

• **Mix:** number of wells in the plate in which the liquid is mixed.

Parameter

• **Fix Number of Samples / (Max) Number of Samples:** to define a fixed number of samples for all runs of this method, activate the **Fix Number of Samples** option and enter the required number. The specified number of samples will then be used for all runs.

To use a variable number of samples, deactivate the **Fix Number of Samples** option and enter the maximum number of samples. The exact number of samples for each individual run must then be entered by the operator when the method starts.

• **Comment:** enter a comment, if required. The comment will be displayed at the start of the method.

Sample Transfer

Use the **Sample Transfer** command to transfer samples from different locations of the source vessel labware to different locations of the destination vessel labware. During the **Sample Transfer** each sample is transferred in accordance with a defined pattern from its original well in the source vessel plate to a defined well in the destination vessel plate.

This command requires the general parameters for **Transfer** commands (see **General configurations for Transfer commands on p. 83**). The following details are specific for this command.

Parameter

• **Transfer type**
 – **Pipette:** the volume set above is aspirated or dispensed in each step.
 – **Multidispense:** the volume set above is dispensed in each multidispense step.
 – **Multiaspirate:** not available.
Reagent Transfer

Use the **Reagent Transfer** command to transfer samples from a location in the source vessel labware to different locations in the destination vessel labware. During the reagent transfer, the reagent is taken from its tube or well in the source vessel labware and dispensed into various specified wells in the destination vessel plate, according to the defined pattern.

This command requires the general parameters for **Transfer** commands (see *General configurations for Transfer commands on p. 83*). The following details are specific for this command.

Parameter

- **Transfer type**
 - **Pipette**: the volume set above is aspirated or dispensed in each step.
 - **Multidispense**: the volume set above is dispensed in each multidispense step.
 - **Multiaspirate**: not available.
- **Pattern**: the pattern is used to specify aspiration and dispensing positions within this command.
 - Standard pattern: not available.
 - Regular pattern with automatic pattern detection: to define a regular pattern that is not row-wise or column-wise, click on the **Pattern** button and define the intended pattern (see *Editing the pattern for a Transfer command on p. 78*).
 - Irregular pattern: to create an irregular pattern for a plate or a ReservoirRack, check the **Irregular Pattern** checkbox below the list of source and/or destination vessel labware as required. Then click on the **Pattern** button and define the intended pattern (see *Creating an irregular pattern for a plate or a rack on p. 81*).

Dilute

The **Dilute** command is a modified **Sample Transfer** command making it easier to carry out diluting series. A defined volume is transported from one well to the next several times by means of pipetting.

This command requires the general parameters for **Transfer** commands (see *General configurations for Transfer commands on p. 83*). The following details are specific for this command.

Parameter

- **Transfer type**
 - **Pipette**: the volume set above is aspirated or dispensed in each step.
 - **Multidispense**: not available.
 - **Multiaspirate**: not available.
- **Pattern**: the pattern is used to specify aspiration and dispensing positions within this command.
 - Standard pattern: not available.
 - Regular pattern with automatic pattern detection: to define a regular pattern that is not row-wise or column-wise, click on the **Pattern** button and define the intended pattern (see *Editing the pattern for a Transfer command on p. 78*).
 - Irregular pattern: Only available for the source vessel location. To create an irregular pattern for a source plate or a ReservoirRack, check the **Irregular Pattern** checkbox below the list of source and/or destination vessel labware. Then click on the **Pattern** button and define the intended pattern (see *Creating an irregular pattern for a plate or a rack on p. 81*).

Options

- **Aspirate from bottom**: select if the liquid is to be aspirated from the bottom of the well.
- **Elution from filter**: not applicable.
- **Dispense from top**: select if the liquid is to be dispensed from the top edge of the well.
- **Change tips**: select one of the available options to specify when the tips are to be changed.
Pool

The Pool command is used to transfer liquids from several source vessel locations to a single destination vessel location. For example, the contents of several source vessel labware wells can be pooled in a new destination vessel labware well.

This command requires the general parameters for Transfer commands (see General configurations for Transfer commands on p. 83). The following details are specific for this command.

Parameter

- Transfer type
 - Pipette: the volume set above is aspirated or dispensed in each step.
 - Multidispense: not available.
 - Multiaspirate: the volume set above is aspirated in each multiaspirate step.
- Pattern: the pattern is used to specify aspiration and dispensing positions within this command.
 - Standard pattern: not available.
 - Regular pattern with automatic pattern detection: to define a regular pattern that is not row-wise or column-wise, click on the Pattern button and define the intended pattern (see Editing the pattern for a Transfer command on p. 78).
 - Irregular pattern: not available.

Options

- Aspirate from bottom: select if the liquid is to be aspirated from the bottom of the well.
- Elution from filter: not applicable.
- Dispense from top: select if the liquid is to be dispensed from the top edge of the well.
- Change tips: select one of the available options to specify when the tips are to be changed.

Pool One destination

The Pool One Destination command is used to transfer liquid from several source vessel locations to a single destination vessel location. This command is a simplified Pool command. (see Pool on p. 86)

This command requires the general parameters for Transfer commands (see General configurations for Transfer commands on p. 83). The following details are specific for this command.

Parameter

- Transfer type
 - Pipette: the volume set above is aspirated or dispensed in each step.
 - Multidispense: not available.
 - Multiaspirate: the volume set above is aspirated in each multiaspirate step.
- Pattern: the pattern is used to specify aspiration and dispensing positions within this command.
 - Standard pattern: not available.
 - Regular pattern with automatic pattern detection: to define a regular pattern that is not row-wise or column-wise, click on the Pattern button and define the intended pattern (see Editing the pattern for a Transfer command on p. 78).
 - Irregular pattern: Only available for the source vessel location. To create an irregular pattern for a source plate or a ReservoirRack, check the Irregular Pattern checkbox below the list of source and/or destination vessel labware. Then click on the Pattern button and define the intended pattern (see Creating an irregular pattern for a plate or a rack on p. 81).
Options

- **Aspirate from bottom**: select if the liquid is to be aspirated from the bottom of the well.
- **Dispense from top**: select if the liquid is to be dispensed from the top edge of the well.
- **Change tips**: select one of the available options to specify when the tips are to be changed.

Mix

Use the **Mix** command to mix liquids at one location. To mix the liquid, it will be aspirated into the tip and dispensed back into the same well.

Parameter

- **No. of cycles**: set the required number of mixing cycles.
- **Speed**: set the mixing speed.
- **Tool / Filter Tips**: select from the list the dispensing tool you want to use. If you are using filter tips, activate the **Filter Tips** option.
- **Mixing Volume**: set the volume that is to be aspirated and dispensed during the mixing process.
- **Fixed height**: activate this option if you wish to use fixed height positions for mixing, and set the height values for aspiration and dispensing. The height is measured between the tip and the bottom of the well.

 This option should only be used with filling levels below the volume of the well. With greater filling volumes, liquid can be forced out of the reaction vessel or well!
- **Racks**: select the labware from the worktable assignment.
- **Pattern**: the pattern is used to specify mixing positions within this command.

 - Regular pattern with automatic pattern detection: click on the **Pattern** button and define the intended pattern.

 - Irregular pattern: To create an irregular pattern place a tick in the **Irregular Pattern** checkbox under the **Racks** list. Then click on the **Pattern** button and define the intended pattern.

Options

- **Liquid Type**: select the **Liquid Type** which most closely resembles the physical properties of the liquid you want to mix.
- **Change tips**: select one of the available options to specify when the tips are to be changed.

Vacuum (epMotion 5075 VAC)

Only on epMotion 5075 VAC. Use the **Vacuum** command to set the vacuum in the vacuum unit.

Parameter

- **Frame**: select the Vac Frame.
- **Vacuum Pressure**: set the vacuum pressure in kPa or mbar.
- **Vacuum time**: set the time for extraction.
- **Use Vacuum Lid**: activate this option if you want to use the Vac Lid. At the start of the command, the gripper transports the Vac Lid from location T0 to the filter plate in the vacuum unit.
- **Check levels**: activate this option if all wells of the filter plate are to be scanned by the Optical Sensor following application of the vacuum. Check Levels must not be preceded by a dispensing command.
Transport (epMotion 5075)

The Transport command uses the gripper to transport labware to another destination location or to the vacuum unit (epMotion 5075 VAC). Tips, racks, thermoadapters and height adapters cannot be transported. Semi-skirted and unskirted PCR plates can only be transported when combined with the thermoblock.

Parameter
- **Labware**: select the labware to be transported.
- **To Location**: select the destination location for the transport.

Temperature (epMotion 5075 with thermal module)

The Temperature command is used to specify the temperature of a thermal module.

Parameter
- **Location**: select a thermal module.
- **Temperature on**: switch on temperature-control.
- **Hold Temperature**: activate this option if the selected thermal module should hold the target temperature after the method has been performed.
- **Temperature**: set a temperature between 0°C and 110°C.

If you want to switch off the temperature control before the end of the method, insert a different Temperature command at the appropriate position in the procedure and deactivate the parameter **Temperature On** in this second Temperature command.

Thermomixer (epMotion 5075 with Thermomixer)

With the Thermomixer command you can define the temperature and mixing configurations for the thermomixer.

Parameter
- **Template**: optionally you can choose pre-cast templates for different mix functions.
- **Save**: you can save your own templates.
- **Speed on**: activate the checkbox if you want to mix.
 - **Speed**: set a speed between 300 – 2000 rpm.
 - **Time**: set a time between 5 s and 120 min.
- **Temperature on**: activate the checkbox if you want to set a temperature.
 - **keep temperature after method run**: activate this checkbox, if you want to hold the temperature after the method run.
 - **Temperature**: set a temperature between 4°C and 95°C.

If you want to switch off the temperature control before the end of the method, insert a different Thermomixer command at the appropriate position in the procedure and deactivate the parameter **Temperature On** in this second Thermomixer command.

The Thermomixer can reach a minimal temperature of 15°C below the actual room temperature.
Wait

The **Wait** command defined a definite pause before the next step. The procedure continues automatically after the specified time has elapsed.

Parameter

- **Wait Time**: set the duration of the pause.
- **Wait for Temperature / Location**: activate this option if the epMotion 5075 should wait until the target temperature at a location has been reached, and select the location from the list.

Comment

Use the **Comment** command to enter a comment line to be displayed at a specific location in the Procedure.

- **Comment**: enter the text for the comment.

User Intervention

Use the **User Intervention** command to insert steps into your method which the user has to execute manually. The procedure only continues after the operator has confirmed the display message.

- **Comment**: enter an informative comment to tell the operator what task he or she needs to carry out.
- **Alarm**: activate this option for an alerting signal when this step in the procedure is reached.

5.6.5 The Run tab

With the **Run** tab you can start a method on one or several devices available in your system. To go to the **Run** tab select the **Work** tab on the left-hand side of the program window and select the **Run** tab.
The Run tab is divided into 2 sections.

1. **Options section** (section 1) is displayed in the top part of the Run tab. It guides you through the starting process step by step and allows you to enter additional parameters and select the required options for the run.

 The Options section in the Run tab displays a list of devices in your system. To display only devices which are currently available and suitable for the selected method, activate the Filter Devicelist option.

2. **Worktable** (section 2) is displayed in the bottom part of the Run tab. It shows the worktable assignment for the active method and allows you to check the labware for the method. You cannot edit the worktable here; To do so you need to change to the Worktable tab (see Worktable tab - equip the worktable on p. 66).

 To start a method, proceed as follows.

 1. Open the method (see Opening an application on p. 50).
 2. Change to the Run tab or, while the Worktable or Procedure tabs are active, click on the Start Method icon.

3. Select the device you want to use and click on Run.

 If the number of samples is defined as variable for any step in the procedure, a window opens in which the actual number of samples for the current run must be entered manually. The number of samples request does not appear in methods with a fixed number of samples.

4. Enter the number of samples and click on OK. If required, enter the number of samples for further commands in the same way.
5. Check the equipping of the worktable of the device and make sure that it matches the worktable assignment defined for the method (as displayed in the Worktable section of the Run tab).

If barcode tracking is activated, in the labware settings window you can select between the settings manual scan and entry list.

6. To edit labware-specific settings for optical sensor and volumes, double-click on the labware in the Worktable section. The Labware Settings window opens.

![Labware Settings window]

7. Change the settings as required, and click on OK. Edit the settings for other labware in the same way, if required.

The Barcode Reader Settings checkbox is only active if ID tracking has been switched on in the method to be started (see p. 66).

8. If you want to deactivate barcode tracking for this run, deactivate the Barcode Reader Settings checkbox.

9. Under Level Sensor Settings in the Options section define the level sensor settings for this run.
The following options are available:

- **Levels**: check the levels according to the settings defined for the individual labware items.
- **Tips**: check the type and quantity of tips in the tip rack.
- **Locations**: check that the labware is positioned correctly on the worktable, as specified in the method.

The options you select here only apply to this particular run. To define the general level sensor settings use the function **Optical Sensor** in **Functions** tab (see *Optical sensor on p. 112*).

10. Only for an epMotion with epBlue ID and barcode reader: click on **Run** or **Next**.

If ID tracking has been activated in the method, you are prompted to enter the barcodes or IDs starting with the destination labware. The corresponding labware is highlighted in the worktable view by a red border.

- **Scan barcodes (manual scan)**: For racks the individual location to which the barcode is to be allocated is marked in red.
 a. Name the list that is created during the run for this labware as required under **List name**.
 b. Scan the appropriate barcode with the barcode reader or enter the ID manually into the input field after activating the checkbox next to **Manual Enter**.
 c. When entering the barcode manually, confirm your input with **OK**. The barcode is entered on the right in the **Read Barcodes** list.
 d. Click on the **Next** button to enter the barcodes for the next labware.
 e. If 2 barcode IDs are to be issued for a reagent, 2 input fields appear for one ID each (see p. 117). If you do not require the second ID use **Use only one ID**.
 f. The method starts when all barcode IDs have been assigned and no further entries are requested.

- **Entry lists**: For labware with activated **Entry list** proceed as follows:
 a. The **Select entry list** window opens with all entry lists. At this point you also have the option of importing further entry lists.
 b. Select the suitable list and press **Accept**. The name of the list appears in a text field under the displayed labware.
 c. Scan the barcode for the marked position to enable the program to compare it with the entry list.
 If no other entries are required, the method will start if there is a match.
 If the scanned barcode ID does not match the entry list, an error message will appear and the **Select entry list** windows is displayed again. Check whether the scanned code or the entry list is correct.
11. If liquid detection is switched off for the method or for individual labware components, the next steps display the labware information for each component, where the volume settings must be entered manually.

12. Enter the current volume and click on Run. If required, enter the volumes for other labware in the same way.

The method starts and the display changes to the Control tab (see The Control tab on p. 96).
Simulation

Before you start your method, you have the ability to simulate the process. To simulate a method, proceed as follows.

1. Open the method (see Opening an application on p. 50).
2. Change to the Run tab or, while the Worktable or Procedure tabs are active, click on the Start Method icon.

The Options section in the Run tab displays a list of devices in your system. To display only devices which are currently available and suitable for the selected method, activate the Filter Devicelist option.

3. Select the device you want to use, click on Simulation and click on Run.

If the number of samples is defined as variable for any step in the procedure, a window opens in which the actual number of samples for the current simulation of the method must be entered manually. The number of samples request does not appear in methods with a fixed number of samples.

4. Enter the number of samples and click on OK. If required, enter the number of samples for further commands in the same way.

5. Specify the level sensor settings for the simulation. Click on Apply when you change the settings or click on Close when you don’t change the settings.

The simulation starts in the Simulation tab.

Only one simulation can start per client. To start a new simulation you have to close the last simulation first. To exit epBlue the simulation must be close.

Controlling the simulation

If you start a simulation, the Simulation tab opens.
The Control icons allow you to control the simulation. The following options are available.

Speed: You can vary the speed of the simulation from real time (Value 1) to ten fold faster by moving the speed needle with the mouse.

- **Start:** to continue the simulation. The simulation will resume until the end, or until you stop it again.

- **Steps:** to carry out the simulation step by step. The simulation will perform the next step or action, and will then stop again.

- **Stop:** to interrupt the simulation. The simulation will stop at the current step or action and wait for further instructions. The other Control icons become active.

- **Abort:** to abort the simulation.

- **Exit:** to exit the simulation. The Simulation tab is closed. Now you can start another simulation or exit epBlue.
Debug log

The debug log can only be recorded by the administrator and is required only if the Eppendorf Service team needs more information in the event of any faults occurring.

As administrator, you also have the option at the start of a method of recording a debug log for this run. The debug log records detailed information about the run in question.

1. Before starting the method, click on the Debug Log checkbox.
 The checkbox then contains a tick.
2. Then start the method as usual.
 Recording the debug log can cause the run to proceed more slowly.
3. The debug log can be viewed and printed out from the Logs tab (see The Logs tab on p. 98).

5.6.6 The Control tab

In the Control tab you can monitor and control the devices on which your methods are currently running.
epBlue automatically changes to the Control tab if you have started a method via the Run tab (see The Run tab on p. 89).
The Control tab is divided into 3 sections.

The Worktable section (section 1) is displayed in the top part of the Control tab. While the method is running, it shows the status of the worktable at the current step in the procedure. The runtime section (section 2) displays the predicted remaining runtime until the end of the application. The Logfile section (section 3) displays the log which records every step in the procedure and provides detailed information on the current status of the run. The Procedure Progress section (section 4) is displayed in the center of the Control tab. It highlights the current step in the procedure and displays some information on the command that is being carried out. The Control icons on the left-hand side allow you to pause, to carry out the method step by step, or to abort the run.

Controlling the run

Whilst the method is running the current command is highlighted in the Procedure Progress section.

The Control icons allow you to control the run. The following options are available.

- **Stop**: to stop the run. The device will stop at the current step or action and wait for further instructions. The other Control icons become active.

- **Steps**: to carry out the method step by step. The device will perform the next step or action in the method, and will then stop again.

- **Start**: to continue the run. The device will resume the run until the end, or until you stop it again.

- **Abort**: to abort the run. The device will abort the run and return to its initial state.
Reading logs

A log is generated automatically when a method is started. The log precisely records every step of the process.

You can view and print the logs and the method description (see Printing applications and logs on p. 64).

5.6.7 The Logs tab

The Logs tab provides an overview of all logs that have run for this application.

Data loss due to missing back-ups

The system does not automatically back up the logs.

- Save the logs using the Backup function.

Select the entry of a run in the list.

The corresponding log is displayed in the Selected Log File section.

To print the log, click on Print in the toolbar or on File-Print in the menu.
5.7 The Labware tab

5.7.1 Overview of the Labware tab

This tab is only displayed if you are logged in as a member of a user group with the necessary user rights.

If the Labware tab is empty when opened, you first have to open the labware via the Home tab (see The Home tab on p. 46) or the file window (see The file window on p. 49).

epBlue automatically changes to the Labware tab if you have opened labware via the Home tab or the file window. You can access the empty Labware tab also through a mouse click. With the Labware tab you can compile labware for use in your system and, provided you have the necessary access rights, can create and edit your own labware combinations.

Generally the Labware tab contains the following two editing modes.

If you edit a Rack and tube combination or a Module rack and tube combination the Labware tab displays lists with the available racks, module racks and tubes from which you can select the labware components.

If you fill a Reservoir rack the Labware tab displays the reservoir rack and you can move different reservoirs and filled module racks into the rack via Drag-and-Drop.
Available Tub Types:
- 22mm Falcon
- 22mm Falcon
- Module HEP I 5ml
- Module HEP II 3ml
- Module HEP III 1ml
- Module HEP IV 0.5ml
- Module OCR 5ml 22mm
- Module OCR 3ml 22mm
- Module OCR 1ml 22mm
- Module OCR 0.5ml 22mm
- Module OCR 0.2ml 22mm
- Module TC Reserve 100ml
- Module TC Reserve 30ml
- Module TC Reserve 10ml
- Module TC Reserve 5ml
- Module TC Reserve 2ml
- Module TC Reserve 1ml
- Module TC Reserve 0.5ml
- Module TC Reserve 0.2ml

Vendor Info:
Eppendorf epMotion Tub 30ml
Description: Conical bottom, polypropylene, clear.
Order No. (Germany): 96065081
Order No. (USA): 960608100
Order No. (UK): 960608110
Order No. (Canada): 960608120
Order No. (France): 960608130
Order No. (Japan): 960608140
Order No. (Australia): 960608150

- Detection size: optical sensors: 3000 µl
- Working volume: 25 µl
- Maximum filling volume: 30 µl

Buttons:
- Reset
- Clear
- Open Labware
- Save
- Save as
List of open labware

On the left-hand side of the Labware tab a list with all open labware is displayed. Several labware items can be open at the same time and can be edited in parallel. The current labware is highlighted in darker blue. To switch between the items, click on the labware names in the list.

Icons in the Labware tab

In the Labware tab the following icons are available in the toolbar under the main menu.

- New... New Application: to create a new application for editing
- Open... Open Application / Open Labware: to open an existing application or labware
- Save: to save changes to applications or labware
- Print: to print a report
- Logout: to log out of your user account and exit the software

Alternatively, these functions are also available in the File menu.

5.7.2 Activate or deactivate labware

You can activate or deactivate labware for use in your system. If you edit applications, only the active labware is displayed in the Worktable tab (see Worktable tab - equip the worktable on p. 66). Deactivated labware will not be displayed and cannot be used in applications. You can reactivate deactivated labware at any time.

Before you deactivate labware, make sure that it is not used in any applications. Applications using labware which is not active will not run in your system.
To activate or deactivate labware for use in your system, proceed as follows.

1. Open the labware file window (see Access to the file window on p. 49).

2. Select a labware folder on the left-hand side of the Folder list.
 If there are subfolders, these are displayed in the Subfolder list.

3. If required, select a subfolder.
 The labware in this folder is displayed in the Labware list.
 A checked checkbox next to the labware indicates that this labware is active and can be used in applications.

4. To view additional information on a labware item, select the required labware and click on Info in the Labware Properties section.

5. Activate or deactivate the labware items as required by clicking the checkboxes.

6. Close the Labware file window.
 The labware you marked as active will be available for use in applications.
 You can change these settings again at any time.

5.7.3 Adjusting the labware bottom tolerance

Bottom tolerance can be adjusted only for some labware types, such as plates, tubes and tubs. You can identify editable labware in the file window easily by clicking on it: if the Edit Labware icon is active, you can edit the bottom tolerance for this labware.

Bottom tolerance describes the distance between the calculated bottom of the tube and the calculated lowest part of the pipette tip. The default setting for bottom tolerance for the majority of tubes is 1 mm. For some reservoirs, it is 2.5 mm.

A reduction in bottom tolerance leads to a lower remaining volume and should only be used with expensive reagents. Reduced bottom tolerance should be examined again when changing batch of pipette tips, plates or tubes or if there is doubt about dispensing being correct.

In the case of special tasks, for example removing liquids from above a pellet, it is recommended that the factory-set bottom tolerance should be increased. The user has sole responsibility for the correctness of dispensing and for straightforward aspiration in the case of tubes with altered bottom tolerance.

Adjusting the bottom tolerance for labware is at your own risk.
To adjust bottom tolerance for labware, proceed as follows.

1. Open the labware file window (see Access to the file window on p. 49).

2. Select a labware folder on the left-hand side of the Folder list.
 If there are subfolders, these are displayed in the Subfolder list.

3. If required, select a subfolder.
 The labware in this folder is displayed in the Labware list.

4. In the Labware list select the labware for which you want to modify the bottom tolerance.
 The properties of the selected labware are displayed on the right-hand side.

5. To edit the selected labware, click on Properties.
 A dialog window appears.

6. Enter the required value in the Bottom Tol. field.
 The remaining volume is displayed below. The minimum bottom tolerance is 200 μm.

7. Click on Save to save the new setting.
 The new settings are saved. If the original labware file is read-only (Eppendorf Standard Labware), a copy of the original labware file is created automatically and is saved with the new settings. Copies are numbered consecutively.

A reduced bottom tolerance should be approved for use only following the appropriate test runs. With the 30 mL and 100 mL reservoirs in particular, the reservoir must not be lifted by the pipette tips during aspiration as a result of a reduction in bottom tolerance.
When calculating the Remaining Volume, the minimum immersion depth of 0.7 mm for the pipette tip in the liquid is included in addition to bottom tolerance. With the 30 mL and 100 mL reservoirs, volume information is not absolutely accurate in the case of reduced bottom tolerance (because of the serrated bottom).

In the case of less stable plates it should be noted that the plate could be slightly bent. It is therefore not recommended to reduce bottom tolerance with such plates.

5.7.4 Filling racks and module racks with tubes

You can create your own labware combinations from existing components, e.g., new rack-and-tube or module-rack-and-tube combinations. The module racks you equip here can then be combined with various reservoirs to create your own customized reservoir racks (see Fill reservoir rack with reservoirs and filled module racks on p. 107).

To equip a rack or module rack with tubes, proceed as follows.

1. Open the labware file window (see Access to the file window on p. 49).

2. In the left-hand side of the Folder list and in the Subfolder list select the folder Equip Racks + Modules with Tubes.
 The existing labware combinations in this folder are displayed in the Labware list.
 The properties of the selected folder are displayed on the right-hand side.

3. To create a new labware combination, e.g., to equip a module rack with tubes, click on New Labware.
 A dialog window opens.

4. Enter a name for the new labware. If required, enter a short description of the combination in the Comment field.<Emphasis/>

5. Click on Create.
The new labware combination has been created and is displayed in the Labware list.

6. In the Racks list select a rack or module rack. In the Tubes list select the appropriate tubes. If you make a selection in the Racks or Tubes lists, the lists are filtered so that only the components are displayed which can be used in combination with the selected object.

The selected items are displayed as graphics below the list. The Product Info field on the right shows additional information on the selected labware.
7. To reset both lists and make a new selection, click on **Clear** on the right-hand side.
 For existing labware which you want to change, set the labware back to its basic state with **Reset**. When you create new racks or tubes via **Create Labware**, **Reset** and **Clear** have the same function.

8. When you have selected a rack or module rack and the suitable micro test tubes, right-click on the labware in the list on the left-hand side of the **Labware** tab and click on **Save as** in the context menu or click on **Save as** on the right-hand side of the **Labware** tab.
 The labware combination is saved.

9. To save the combination under a different name, right-click on the labware in the list on the left-hand side of the **Labware** tab and select **Save As** from the context menu.
 A dialog opens.

10. Enter a new name for the labware combination and click on **Save**.
 The labware is saved under a new name and displayed in the **Labware** tab for subsequent editing.

11. Create and edit other required labware combinations in the same way.
 The module racks you have equipped here can now be used to create your own customized reservoir racks (see p. 107).
5.7.5 Fill reservoir rack with reservoirs and filled module racks

You can create your own customized reservoir racks by equipping a rack or holder with various reservoirs or equipped module racks. If you have previously defined your own module-rack-and-tube combinations (see Filling racks and module racks with tubes on p. 104), you can now use those equipped module racks in a reservoir rack.

To equip a reservoir rack with reservoirs or equipped module racks, proceed as follows.

1. Open the labware file window (see Access to the file window on p. 49).

2. In the left-hand side of the Folder list and in the Subfolder list select the folder Equip Holder with Tubes + Modules.

The existing labware combinations in this folder are displayed in the Labware list.

The properties of the selected folder are displayed on the right-hand side.

3. To create a new labware combination, e.g., a new holder or reservoir rack, click on New Labware.

A dialog window opens.

4. Enter a name for the new labware. If required, enter a short description of the combination in the Comment field.

5. Click on Create.

The new labware combination has been created and is displayed in the Labware list.
The new labware is opened and displayed in the Labware tab.

The list on the left shows the available reservoirs and the equipped module racks which you can use to equip the reservoir rack.

While you are dragging the reservoir or equipped module rack, it is attached to the mouse pointer by its upper left-hand corner. To position it in the reservoir rack, direct the mouse pointer (not the center of the reservoir or module rack icon) to the intended location.
6. Select a reservoir or equipped module rack from the list, drag it with the mouse to its intended location in the reservoir rack and drop it there by releasing the mouse button. The reservoir or equipped module rack is displayed in the reservoir rack.

7. To replace an item in the reservoir rack with a different reservoir or equipped module rack, simply drag the new item to the intended location. The old item is removed automatically.

8. When you have equipped the reservoir rack, click on **Save**. The combination is saved.

9. To save the combination under a new name right click on the labware in the list on the left-hand side of the **Labware** tab and select **Save As** in the context menu or click on **Save as** on the right-hand side of the **Labware** tab.

10. Enter a new name for the labware combination and click on **Save**. The labware is saved under a new name and displayed in the **Labware** tab for subsequent editing.

11. Create and edit other required reservoir racks and module racks in the same way.
5.8 The Functions tab

5.8.1 Overview of the Functions tab

This tab is only displayed if you are logged in as a member of a user group with the necessary user rights.

The Functions tab contains some general functions for configuring the system.

Only for a epMotion with epBlue ID and barcode reader.

Barcode reader

The top entry on the left-hand side of the Functions tab allows you to change the settings for the Barcode reader.

List of available devices

On the left-hand side of the Functions tab a list with all available devices is displayed. The current device is highlighted in darker blue. To switch between the devices, click on the device names in the list.

Two tabs for configuring devices

There are two further tabs within the Functions tab:

Properties: The Properties tab displays a component list and specifies its respective firmware, proxy and server versions.
Settings: The Settings tab displays general information and you can execute service functions through it as described in the following sections.

5.8.2 Barcode reader

Only for a epMotion with epBlue ID and barcode reader.

Use this function to change the settings of the barcode reader.

- **Trigger mode:**
 - Activate *Manual/Serial* to read barcodes by pressing the key on the barcode reader.
 - Activate *Presentation Mode* if the barcode reader should automatically and continually scan for barcodes.

Use *Check* to verify the current setting of the reader. After completing the changes, press *Update*. Use *Default* to reset the reader to *manual/serial.*
5.8.3 Optical sensor

Use this function to set the general level sensor settings. To do so, proceed as follows.

1. Select the function Optical Sensor in the Settings list. The current settings are displayed on the right.

The following options are available:

- **Levels**: check the liquid levels according to the settings defined for the individual labware items.
- **Tips**: check the type and quantity of tips in the tip rack.
- **Locations**: check that the labware is positioned correctly on the worktable, as specified in the method.

2. Activate or deactivate the options as required, and click on Apply. The new level sensor settings are active.

5.8.4 Tool interlock

To unlock the tool in case of a system error. This function allows you to control the locking mechanism of the carrier which locks the dispensing tool in position when it is taken up by the carrier.

To control the tool interlock, proceed as follows.

1. In the Settings list select the function Tool interlock. The current settings are displayed on the right.

The State section displays the current lock status.

- Zero value sensor: shows the status of the sensor which checks that the tool is in zero position.
- Tool detection sensor: shows the status of the sensor which identifies the tool in the carrier.
- Interlock: shows the current status of the tool interlock.
- Current Tool: if there is a tool in the carrier, it is identified and displayed here.

While you operate the locking mechanism, hold the tool firmly in position with one hand. Otherwise it will drop out of the locking mechanism and be damaged.

2. Click on Lock or Unlock to lock or unlock the tool.
5.8.5 Gripper

Use this function to check and adjust the distance of the gripper jaws.
To do so, proceed as follows.

1. In the Settings list select the function **Gripper**.
The current settings are displayed on the right.

 ![Gripper Settings](image)

 The **Properties** section displays the current distance of the gripper jaws.
The **Distance** section allows you to adjust the distance.

2. Enter the required distance in the **Gripper distance** field, and click on **Set**.
3. To export the settings to a file, click on **Export**.

5.8.6 Thermal module x

Use this function to check the thermal modules in your system.
To do so, proceed as follows.

1. In the Settings list select the function **Thermal module x** for the thermal module you want to check.
The settings are displayed on the right.

 ![Thermal Module Settings](image)

 The **State** section displays the current status.
 - **Desired Temperature (°C)**: shows the target temperature.
 - **Actual Temperature (°C)**: shows the current, measured temperature of the thermal module.
 - **Actual current (A)**: shows the current flowing through the thermal module.

2. In the **New Temperature** field, enter a target temperature for the test (between -5°C and 110°C).
3. In the **New time** field, enter the duration of the test (between 0 and 99 minutes).
4. Click on Start.
The thermal module starts heating or cooling, depending on the target setting and its actual temperature, until either the target temperature is reached or until the target time is up.

In the Set Temperature section, the following information is displayed:

- Time (min): shows the time (in minutes) you specified as duration for the test.
- Remain time (min): shows the remaining time (in minutes) until the end of the test.
- Temp reached after (min:sec): shows the actual time needed to reach the target temperature.

If the target temperature is reached before the target time is up, the thermal module holds the temperature for the remaining time until the end of the test.

5. To refresh the display during the test, click on Refresh.

6. To switch on the fan, click on Fan On.

5.8.7 Thermomixer

Use this function to check the Thermomixer in your system. To do so, proceed as follows.

WARNING!

Danger of injury from ejected labware when using the Thermomixer command

When employing too heavy labware and using too high speeds labware can come loose from the holder and be hurled around.

- Ensure that the front cover is closed and undamaged.
- Select low speeds with heavy labware.
- Only use compatible labware.

CAUTION!

Contusion through moving thermomixer

The thermomixer can cause light contusion during operation if touched.

- Ensure that the front cover is undamaged and is closed during operation.
- Do not reach into the epMotion during operation.

NOTICE!

Physical damage due to cross contamination and splashing liquid when using the Thermomixer command

With too high liquid level in the tubes and too high speeds liquids can splash out from the tubes which damage the device and can lead to cross contamination.

- Do not mix at high rotational speed with high liquid levels.

The use of the thermomixer via the Service command is your own responsibility. No warranty is accepted for damage caused by incorrect settings.

Tab. 1: Maximum revolutions per minute [rpm] when using the Thermomixer command

<table>
<thead>
<tr>
<th>Labware Type</th>
<th>Maximum revolutions per minute [rpm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir rack</td>
<td>-</td>
</tr>
<tr>
<td>Tubs</td>
<td>1000</td>
</tr>
<tr>
<td>Thermorack / Thermoblock</td>
<td>1000</td>
</tr>
<tr>
<td>DWP 384</td>
<td>1200</td>
</tr>
<tr>
<td>DWP 96</td>
<td>1200</td>
</tr>
<tr>
<td>MTP 384</td>
<td>2000</td>
</tr>
<tr>
<td>MTP 96</td>
<td>2000</td>
</tr>
</tbody>
</table>
1. In the *Settings* list select the function *Thermomixer*.

 The settings are displayed on the right.

2. In the *Parameter* section of *Mixer control* enter a target speed (rpm) and the duration time of the mixing procedure.

3. Click on *Start*.

4. The *State* section of the *Mixer control* displays the remaining time of the mixing procedure.

5. Click on *Stop* to determine the mixing procedure.

 The Thermomixer mix until the duration time is up or until determine with *Stop*.

6. The *State* section of the *Temperature control* displays the current status.

 • *Desired Temperature (°C)*: shows the target temperature.

 • *Actual Temperature (°C)*: shows the actual, measured temperature of the thermomixer.

 • *Actual current (A)*: shows the current flowing through the thermal module.

7. In the *New Temperature* field, enter a target temperature for the test (between 4°C and 95°C).

8. In the *New time* field, enter the duration of the test (between 0 and 99 minutes).
9. Click on Start.

The Thermomixer starts heating or cooling, depending on the target setting and its actual temperature, until either the target temperature is reached or until the target time is up. In the Set Temperature section, the following information is displayed:

- *Time (min)*: shows the time (in minutes) you specified as duration for the test.
- *Remain time (min)*: shows the remaining time (in minutes) until the end of the test.
- *Temp reached after (min:sec)*: shows the actual time needed to reach the target temperature.

If the target temperature is reached before the target time is up, the thermal module holds the temperature for the remaining time until the end of the test.

10. Click on Fan on to switch on the fan.

5.8.8 Firmware Update

With this function you can execute a Firmware Update.

1. In the Settings list select the function Firmware Update.

2. Under Flashfile, specify the location of the new firmware file.

3. Click on Flash.

 The firmware update is carried out. The progress is shown under State.

4. When the firmware update is complete, exit the client and the server software. Then restart first the server, then the client software.

5.8.9 Dosing device

Use this function to check the strokes of the dosing device for maintenance and calibration purposes.

Insert a tool and lock it with the Tool interlock function.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Tool used: Name of the tool.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool path</td>
<td>File path of the tool specification file.</td>
</tr>
<tr>
<td>Strokes</td>
<td>Strokes of this dosing device.</td>
</tr>
</tbody>
</table>

Don't forget to remove the tool:

1. Hold the tool with one hand.
2. Unlock the tool carrier with the Tool interlock function.
5.9 The Admin tab

5.9.1 Logging in as administrator

Loss of data due to misuse or loss of the administrator password.
The administrator password protects the system against unauthorized access to the configuration
and the stored data of all users.

- Make a note of the administrator password and keep it in a safe place. If you lose the
 administrator password, contact Eppendorf Service.
- Provide the administrator password only to persons who are permitted to edit the
 configuration of the system and who have the necessary skills to do this.

In order to prevent unauthorized access to the system, it is strongly recommended that you
change the default administrator password as soon as possible (see The Admin tab on p. 117).
It is recommended that you create individual user accounts for every operator who will use the
epMotion 5075 (see Creating the first user account on p. 35).

To log in as administrator, proceed as follows.

1. To start epBlue, double-click on the Eppendorf epBlue icon on the desktop, or select Start -
 Programs - Eppendorf - epBlue in the Windows Start menu.
 The login screen appears.
2. Enter the account name “administrator” and the administrator password (the default is
 “Admin123!”), and click on Login.
 epBlue starts and the program window displays the Home (see Overview of the Home tab on
 p. 46) tab. You are logged in as administrator.
3. Select the Admin tab on the left-hand side of the program window.

5.9.2 Overview of the Admin tab

The Admin tab is only displayed if you are logged in as administrator. It allows you, as
administrator, to manage user accounts and groups.

In the left-hand column of the Admin tab you can change between Account, Group, Extra,
Device List and Backup/Restore. If you are logged in as Admin Lab, in the Admin tab, you will
be able to change between Barcode Settings and Print headers. The current selection is
highlighted.

Account

When Account is selected in the left-hand column of the Admin tab, there are two tabs for editing
user accounts:

- Account Overview: shows a list of all user accounts and gives you some information about
every user (see p. 120).
- Edit Account: allows you to create new user accounts or edit existing accounts (see p. 121).
Group

If Group is selected in the left-hand column of the Admin tab, the Group Overview tab displays a list containing all the user groups and the user rights defined for each group (see p. 125).

Extra

Malfunctions when connecting additional clients.

- Use only software approved and tested by Eppendorf AG.
- If you connect an additional client (e.g., PC or laptop) yourself and reconfigure the system, you take sole responsibility for this.
- Only install and configure an extra client if you have adequate experience of the relevant network and system configuration tasks.
- Integrate and configure an additional client into a cooperation network, only let an IT specialist do it who can also take over Support.
- Before installation, you should perform a data backup on the prospective client.
- Eppendorf AG expressly accepts no warranty for epBlue software functioning on the client together with other programs selected by the licensee.
- Eppendorf AG likewise accepts no liability for any damages or consequential damages (such as loss of profit, interrupted operations, loss of information or data) which may occur. This does not apply where compulsory liability is prescribed by law, in accordance with product liability law for example, in cases of intent, gross negligence, where there is loss of life, injury or impairment to health or if substantial contractual obligations are breached.
- Eppendorf AG does not give any support for any additional clients configured on the industry PC.

If Extra is selected in the left column of the Admin tab, the Network tab is available:

Network - setting up a new client

If you have selected Extra in the left-hand column of the Admin tab you can establish a point-to-point Ethernet connection to a second client. To this end, the client software (epBlue) is installed on a second computer without server (see "Remote Client and Network Setup Guide"). The client must be connected to the server computer (integrated industrial PC) by an Ethernet crossover cable. To enable the second client to have access to the server, the second network connection of the server PC must have an IP address assigned to it:

1. Select the Network tab in the Extra tab of the Admin section of the server PC.
2. Select the field on the left, Local Area Connection 2.

The network interface card of the second client needs the IP address of the server to get access:
3. Enter an IP address on the right.
 The IP address should be 192.168.XXX.YYY. Do not use "20" or "020" for the numbers "XXX". This must not be the same as the IP address for the Local Area Connection or another IP address, which is already assigned to a device. The Local Area Connection is the connection to the device. By default, the server's IP address is 192.168.20.1, the device's IP address 192.168.20.2.

4. Adopt the IP address by clicking on Apply.
 When the second client starts up, select the IP address quoted for the second network connection at Server in the login window. The second client now has access to the data of the server on the other computer.

Device list

Here you can see information on all the connected devices. By default the name of the device is its serial number. You can change the name if necessary.

- Confirm your changes with Apply.

Backup/Restore

NOTICE!

Data loss due to lack of data backup or incorrect storage of data carriers.

epBlue saves all information on user accounts, applications, labware and logfiles in a database on the epMotion PC. Damage to this database (e.g., due to a hardware fault) causes this information to be lost.

- Carry out regular database backups via the function Backup in Admin tab.
- Save the backup file on a secure data carrier and store it in accordance with the manufacturer instructions.

Eppendorf is not liable for data loss and its consequences.

When Backup/Restore is selected in the left-hand column of the Admin tab, there are two tabs for editing user groups:

- **Backup**: In the upper part you can make entries for automatic backups.
 a. Activate the Create full Backup every checkbox to automatically create a full backup. The interval for the backups can be entered in days to the right.
 b. Specify a path under which the backup should be stored.
 c. End your input with Apply when your changes should be adopted.
 d. Press Reset to delete all the entries again.

- **Restore**: You can define settings for your restore here.
 a. The Restore type is set to full restore.
 b. Below specify the path under which the backup file is stored.
 c. Enter further information in the detail window.

The epBlue client must not be connected to the epBlue server when an automatic backup is performed. epBlue checks whether the epBlue client is closed. If the epBlue client is not closed, the automatic backup is not performed and an error message is generated.

- In the bottom part you can define the settings for a manual backup.
 a. The Backup type is set to full backup. A name for the backup is automatically generated.
 You can change this name manually.
 b. On the right-hand side, enter a path under which the backup should be saved.
 c. Enter further information in the detail window.
 d. Press Run to create the backup.
 A status display and a progress bar show the progress of the backup.

- **Restore**: You can define settings for your restore here.
 a. The Restore type is set to full restore.
 b. Below specify the path under which the backup file is stored.
 c. Enter further information in the detail window.
d. Press Run to restore the backup.
 A status display and a progress bar show the progress of the restore.

The ID List Settings and Print headers options are only shown if you are logged in as Admin Lab.

ID List Settings

This area is only visible to Admin Lab.
1. Configure whether 1 or 2 IDs are to be used for reagents to be processed using a reagent transfer, e.g., to document the reagent type and batch number of expiry date in the method log.
2. Define the file type (CSV or XML) for import and export.
3. Define a default file path for import and export.
4. Confirm changes with Apply.

Print headers

This area is only visible to Admin Lab.
You can make changes to the header area of your printouts here.
1. Activate the Edit print header template checkbox.
2. Make changes in the right-hand text window if necessary.
3. Select a different header or image file 2 lines below the checkbox above the right-hand button and save it by clicking on the Save Header button.
4. Define a default header area with Set as default header.
5. Delete an imported file with Delete Header.
6. Click on the Show preview button to show the new header area.

5.9.3 Account Overview

The Account Overview tab in the Admin tab provides an overview of all user accounts registered in your system.

<table>
<thead>
<tr>
<th>Account</th>
<th>Firstname</th>
<th>Company</th>
<th>Telephone number</th>
<th>Profile</th>
<th>Home</th>
<th>Member of</th>
</tr>
</thead>
<tbody>
<tr>
<td>administrator</td>
<td>Administrator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>service</td>
<td>Service</td>
<td>123</td>
<td>456</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guassere</td>
<td>Guassere</td>
<td>123</td>
<td>456</td>
<td></td>
<td></td>
<td>Administrator</td>
</tr>
</tbody>
</table>

The overview contains the following information.
- **Personal Info**: the user’s full name and contact information.
- **Profile Info**: the user’s home directory, the date of registration of the user account and, if applicable, its expiry date.
- **Groups**: the user groups to which the user belongs. The user inherits the user rights defined for the selected group or groups.

To create or edit user accounts, go to the Edit Account tab.
5.9.4 Edit accounts

The Edit Account tab in the Admin tab provides functions for creating new or editing existing accounts. The Account List on the left-hand side displays the user accounts in your system. You can create new user accounts (see p. 121), edit existing accounts (see p. 122), delete accounts (see p. 123), and change the password for an account (see p. 124).

Create new user account

To create a new user account, proceed as follows.

1. Select Account in the left-hand area of the Admin tab to highlight it in dark blue and then select the Edit Account tab.

2. Click on New Account.

 The following form is displayed.

 3. In the Account field, enter an account name for the new user.

 4. In the Password and Confirm password fields, enter the password for the new user account. If the entries in the two fields do not match exactly, a message will be displayed. In this case, delete the contents of both fields and enter the password again.

 5. In the Member of section, activate the user group to which you want the new user to belong. The user will have the user rights defined for the selected group.

 6. If you want to enable the account for a certain period of time, activate the Account valid until option and enter the expiry date there.

You also have the option to lock the account until a certain day. To do this, activate the Disabled until option and enter the expiry date there. A disabled account can be enabled again by the administrator at a later time (see Editing a user account on p. 122).
7. If you wish, you can enter further information about the new user, e.g., the user’s name and contact information. This information is optional. If you enter the name of the user he or she will be addressed by this name in the Home tab after login. Otherwise the account name will appear.

8. Click on Submit.

The new user account is created. The user name appears in the Account List in the Edit Account tab.

9. If required, create further user accounts in the same way.

10. When you have finished, log out as administrator to prevent unauthorized access to the system.

Editing a user account

To edit an existing user account, proceed as follows.

1. Select the Edit Account tab in the Admin tab.
2. In the Account List on the left-hand side, select the user you want to edit.
3. Click on Edit Account.

The user account settings are displayed.

4. In the Member of section, activate the user group to which you want the user to belong. The user will have the user rights defined for the selected group.
5. If you want to enable the account for a certain period of time, activate the **Account valid until** option and enter the expiry date there.

 You also have the option to lock the account until a certain day. To do this, activate the **Disabled until** option and enter the expiry date there. A disabled account can be enabled again by the administrator at a later time (see **Editing a user account** on p. 122).

Each user name can only be used once, even if it has already been deleted once.

6. If you wish, you can enter further information about the new user, e.g., the user’s name and contact information. This information is optional. If you enter the name of the user he or she will be addressed by this name in the **Home** tab after login. Otherwise the account name will appear.

7. Click on **Submit**.

 The changed settings for this user account are now active.

8. If required, edit other user accounts in the same way.

9. When you have finished, log out as administrator to prevent unauthorized access to the system.

Deleting a user account

To delete a user account, proceed as follows.

1. Select the **Edit Account** tab in the **Admin** tab.
2. In the Account List on the left-hand side, select the user you want to delete.
3. Click on **Remove Account**.

 The user account settings are displayed.

Tip! Each user name can only be used once, even if it has already been deleted once.
4. Click on *Remove*.
 A message appears.

5. To keep the account, click on *No*.
6. To delete the account, click on *Yes*.
 The account is deleted.

7. When you have finished, log out as administrator to prevent unauthorized access to the system.

Change password

Every user can change his or her own password at any time by selecting *Tools - Account - Change Password* from the main menu. If a user has lost his or her password, the administrator can change the user's password, e.g., reset it to a standard password. In this case, the user should then change the standard password to a personal password as soon as possible to prevent unauthorized access to the system.

To change the password for a user account, proceed as follows.

1. Select the *Edit Account* tab in the *Admin* tab.
2. In the Account List on the left-hand side, select the user whose password you want to change.
3. Click on *Change Password*.
 The following form is displayed.

4. In the *Password* field, enter the current password.
5. In the *New Password* and *Confirm password* fields, enter the new password. If the entries in the two fields do not match exactly, a message will be displayed. In this case, delete the contents of both fields and enter the new password again.
6. Click on *Submit*.
 The new password for this user account is now active.

7. When you have finished, log out as administrator to prevent unauthorized access to the system.

5.9.5 Set up a new password

If a user has lost the password, the administrator can change the user's password. To set a new password for a user account, proceed as follows

1. In the *Admin* tab select the *Account* item and go to the *Edit* tab.
2. In the Account List select the user whose password has been forgotten on the left-hand side.
3. Click on Set a new password.
 The following form is displayed.

4. Enter the new password in the New Password and Confirm Password fields.
 If the entries in the fields do not match exactly, a message is displayed. In this case, delete
 the contents of both fields and enter the new password again.
5. Click on Submit.
 The new password for the selected user account is active.
6. Log out as administrator to prevent unauthorized access to the system.

5.9.6 Group overview

The Group Overview tab in the Admin tab displays a list of all user groups and the access rights
defined for each group.

The overview contains the following information.
• **Group**: each group is displayed in a separate table column.

• **Fixed**: this checkbox is set for all groups because the user groups cannot be modified.

• **System, Application, Labware etc.**: the available user rights are listed. The rights that are active for a user group are marked with an X in the respective table cell.

The following user groups are available. For exact details of user groups and access rights in your system, please check the group overview for your system.

• **Administrator**: members of the Administrator group can manage user accounts and user groups and have access to some service functions. They are authorized to configure the system, set up hardware and software, backup and restore data and also to import, export and print data.

• **Admin Lab**: members of the Admin Lab group have access to application-related service functions. They are authorized to create, edit and run applications, edit and manage labware and also to import, export and print data.

• **User Level 2**: members of the User Level 2 group can create, edit and run applications, edit and manage labware and also import, export and print data.

• **User Level 1**: members of the User Level 1 group can create, edit and run applications and also print data.

• **Guest**: members of the Guest group can run applications.
6 Quick start

6.1 Short instructions

Only trained staff already familiar with the operating manual and the epMotion may work to the short instructions. Observe the safety precautions.

6.1.1 Select and start the epMotion method

1. Double-click on the Eppendorf epBlue icon on the desktop, or select Start - Programs - Eppendorf - epBlue in the Windows Start menu.
 epBlue starts, and the login screen appears.
2. Enter your account name and your password.
3. Click on Login.
 epBlue starts and the program window displays the Home tab.
4. Click on Open / run applications in the Tasks area of the Home tab or click on the icon Open and select Open Application or select File - Open / run applications in the main menu.
 The file window opens.
5. Open the user directory and the folder containing the epMotion method you want to start.
 Select the method and click on Open Application.
 If the method is suitable for more than one device in your system, a list of devices is displayed.
6. Select the device you want to use and click on OK.
 The method opens and the program window changes to the Work tab.
7. In the Work tab select the Worktable tab and check the equipment of the worktable. Check whether the labware shown in the display is available at the corresponding locations in the worktable and whether all locations identified as empty in the display are actually empty.
8. Check whether the tip racks are sufficiently filled with tips, whether all tubes are open and whether the waste basket is empty.
9. Close the front hood.
10. Change to the Run tab and activate the option Filter Device List to display only devices that are online and suitable for the method.
11. Select the device you want to use and click on Run.
 The method is loaded on the selected device.
 If the number of samples for each step in the procedure has been defined as variable, a window opens.
12. Enter the number of samples and click on OK. If required, enter the number of samples for further commands in the same way.
13. To edit labware-specific configurations for the level sensor and the volumes, double click on the labware in the Worktable area of the Run tab or right click on the labware and select Properties in the context menu.
14. To define the level sensor configurations for this method run, activate or deactivate the corresponding options.

 The level sensor can execute the following scans.
 • Levels: check the liquid levels according to the settings defined for the individual labware items.
 • Tips: check the type and quantity of tips in the tip rack.
 • Locations: check that the labware is positioned correctly on the worktable, as specified in the method.

Hint!
Only trained staff already familiar with the operating manual and the epMotion may work to the short instructions. Observe the safety precautions.
15. Click on Run.
16. If necessary enter the liquid levels for the labware objects for which the Liquid Detection has been deactivated and click on Run.
 The method starts and the display changes to the Control tab. The progress and current status of the method is displayed. A message appears when the method run is complete.
17. To cancel the method before it is complete click on the icon Stop in the Control tab. The method stops. Then click on the Abort icon to abort the method.

6.2 Sample application for epMotion

6.2.1 Target of the application

A suitable volume of a PCR Mastermix is to be dispensed into a PCR 96-well plate from a thermorack equipped with 1.5 mL Eppendorf micro test tubes. The DNA samples from an MTP 96-well plate are then pipetted into the relevant wells of the PCR 96 plate and the PCR mixture carefully mixed. In this example, the volume of the mixture is 20 μL.

6.2.2 Sample preparation

1. Prepare the Mastermix in a 1.5 mL Eppendorf micro test tube and position in the thermorack. In doing so, observe the calculations for aspiration volumes.
2. Transfer eight DNA samples with a volume of at least 50 μL to the MTP 96 plate in any sequence.

You can also perform a test run using distilled water.

6.2.3 Creating a sample application

The following sections describe the steps for creating the sample application specified above. To follow these instructions, you must be familiar with the operating manual and the epMotion. Follow the safety notes at all times. If you are unsure please refer to the extensive description in the Work tab (see The Work tab on p. 61).

Logging in and creating a new application

1. Log in to your user account.
2. Click on Create/edit applications in the Tasks section of the Home tab or click on the New icon and select New Application or select File - Create/edit applications in the main menu. The file window opens.
3. Select your user name in the User list on the left-hand side to gain access to your user directory.

4. In the Folder list select the folder in which you want to create the new application.

5. Click on New Application or right click in the Applications list and select New Application in the context menu or click on the Create new application icon above the Applications list.

6. Enter a name for the new application. If required, enter a short description of the application in the Comment field.

7. In the Device type list select the item Workstation.

8. Click on Create.

 The new application has been created and is displayed in the Applications list.

The application opens and the program window changes to the Work tab.
Equipping the worktable

1. In the *Work* tab select the *Worktable* tab to equip the worktable with the labware required for your method.

2. In the *Labware Type* and *Sub-Type* lists select the *Equipped Racks + Modules* item. In the *Labware* list select the thermorack *Rack_1_5mL*.

3. Right-click and drag the Rack upwards with the mouse, then drop it in location C2 (TEMP2). A dialog window opens, displaying information about the rack which has been positioned.
4. Check that for Liquid detection by the optical sensor All Positions has been selected and click on OK.

5. In the Labware list under Tips, select 50 μL tips (tip50) and position them in location A2.

6. Click on OK to close the dialog window.

7. Under Plates and then under mtp96, select the MTP 96 plate (EP_pDNA_MTP_96).
8. Position the plate in location B3.
9. In the dialog window, check whether liquid detection is set to Off, and click on OK. Liquid detection is very time-consuming for plates with 96 wells.

12. In the dialog window, check whether liquid detection is set to Off, and click on OK.

The worktable is now equipped with the necessary labware for this application.

13. To save the method with this worktable assignment, click on the Save icon, or select File - Save from the main menu, or right-click on the method name and select Save from the context menu.

For more detailed information on equipping the worktable, please refer to the detailed description (see Worktable tab - equip the worktable on p. 66).

Defining the procedure

1. In the Work tab select the Procedure tab to define the sequence of commands to be executed during the method.

2. In the Commands area in the Procedure tab double-click on the Number of Samples icon to add the Number of Samples command to the procedure.

3. In the Parameter section deactivate the Fix Number of Samples checkbox and enter 8 as the maximum sample number.
4. In the **Commands** in the **Procedure** tab double click on the **Reagent Transfer** icon to add it to the program or click on the icon, move the command upwards and drop it into the next program location.

5. In the **Parameter** section enter the following settings for the **Reagent Transfer** command:
 - **Pipet. Tool**: Select TS_50.
 - **Volume**: enter 15 μL.
 - **Select Multidispense**.

6. In the **Source** list select Thermorack (Tube_1) as source vessel. In the **Destination** list select the PCR plate (pcr96_1) as destination vessel.

7. To define the pattern for the Reagent Transfer, click on the **Pattern** button.
 The **Pattern** window opens. The source vessel labware is displayed on the left-hand side highlighted in blue. The destination vessel labware is displayed on the left-hand side highlighted in red.

8. In the source vessel labware click on the location with the prepared mastermix. In the destination vessel labware click consecutively on the wells of the first column.
9. Click on OK to confirm the pattern and close the pattern window.
10. For the command Reagent Transfer click on the Options tab in the Parameter section. Under Change Tips, select the when command is finished option.
11. In the Commands in the Procedure tab double click on the Sample Transfer icon to add it to the program or click on the icon, move the command upwards and drop it into the next program location.

12. In the Parameter section enter the following settings for the Sample Transfer command:
 - Pipet. Tool: Select TS_50.
 - Volume: enter 5 μL.
 - Select Pipette.

13. In the Source list select the MTP 96 well plate (mtp96_1) as source vessel and activate the Irregular Pattern option. By selecting this option, you can define an irregular pattern for the samples provided. In the Destination list select the PCR plate (pcr96_1) as destination vessel.
14. To define the pattern for the Sample Transfer, click on the Pattern button.
15. In the source vessel labware click on the location containing the first sample. In the
destination vessel labware click on the first well (A1).
16. Change between Source and Destination to select the remaining (empty) source vessel
locations and the (default) destination vessel locations. Because the Irregular Pattern option
is only active for the source vessel, individual wells of the destination vessel can only be
selected in the default pattern.
17. Click on OK to confirm the pattern and close the pattern window.
18. On the Options tab click in the Parameter section. Under Change Tips, select the before
aspiration for next destination option.
19. On the Mix tab click in the Parameter section. Activate the Mix after dispensing option and
enter 10 μL as the mixing volume and 5 as the number of mixing cycles. Leave all other
settings unchanged.
20. To save the method with this procedure, click on the Save icon, or select File - Save from the
main menu, or right-click on the method name and select Save from the context menu.

For more detailed information on defining a procedure, please refer to the detailed description
(see Procedure tab - defining a procedure on p. 72).

Checking and saving the application

1. To check the parameter settings of the current application, click on the Check Application icon
in the toolbar.
 A message window opens to inform you if a parameter error was found. Correct the error and
repeat the check until all errors have been corrected.
2. To save the application, click on the Save icon, or select File - Save from the main menu, or
right-click on the application name and select Save from the context menu.
6.2.4 Starting the application

1. Change to the Run tab and activate the Filter Devicelist option to display only devices that are online and suitable for the application.

2. Select the device you want to use and click on Run. The application is loaded on the selected device.

 Because the command Number of Samples in the procedure defines a variable number of samples, you must enter the number of samples for this run manually.

3. Enter the number of samples and click on OK.

4. Check the equipping of the worktable. To edit labware-specific settings for level sensor and volumes, double-click on the labware in the Worktable section of the Run tab.

5. Define the optical sensor settings for this run.
 - Levels: check the liquid levels according to the settings defined for the individual labware items.
 - Tips: check the type and quantity of tips in the tip rack.
 - Locations: check that the labware is positioned correctly on the worktable, as specified in the application.

6. Click on Run.

 A volume query appears for the MTP 96 plate, as Off was previously set for liquid detection.
7. Enter 50 μL as the volume, and click on Run. The application starts and the display changes to the Control tab. The progress and current status of the application are displayed. When the application run is finished, a message appears.

8. To cancel the application before it is complete click on the Stop icon in the Control tab. The application stops. Then click on the Abort icon to abort the application.
7 Troubleshooting

7.1 Error search

If a method does not start running after Start, check the following points. Note that the Labware on the worktable must match the method.

- Is plate or rack correctly inserted and not the wrong way round?
- Is a height adapter with the correct height being used?
- Are all the plates, racks, tips, tubs etc. shown in the display present on the worktable of the instrument?
- Are the necessary dispensing tools correctly suspended in the holders in locations T1 to T4?
- For methods with Transport commands: Has the gripper in location T0 been correctly positioned by hand?
- For epMotion VAC and methods using the vacuum unit: are all components of the vacuum unit correctly positioned?
- For epMotion MC: is the mat for the CycleLock level in the frame? Is the texturing of the mat facing upwards and is the mat not in contact with the base of the location?
- Are all tubes and tubs open?
- Are the tip racks filled with enough tips and have the lids been taken off the tip racks?
- Is the lid of Safe-Lock tubes correctly positioned?
- Are all the locations on the worktable of the instrument indicated as empty in the display really empty?
- Is the correct dispensing tool inserted and is it undamaged?
- Are the necessary filling quantities for the source present?
- Are racks or plates subsequently required for the parking positions ready and has their volume been entered?

For an epMotion with barcode reader:

- Is the barcode reader correctly connected?
- Was the correct barcode ID scanned?
- If barcode ID tracking ensured by the commands of the method?
7.2 General errors

7.2.1 Read error of the optical sensor

<table>
<thead>
<tr>
<th>Symptom/message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read error of the optical sensor in detecting labware</td>
<td>Plates such as MTP, DWP, PCR etc. are not level on the worktable surface or have been inserted inverted.</td>
<td>Check that the labware has been correctly inserted into the location.</td>
</tr>
<tr>
<td>Read error of the optical sensor in detecting labware</td>
<td>The plastic plate is not detected. The cause might be a minor unevenness in the the plastic surface. Such unevenness is usually not visible.</td>
<td>Wipe a moist cloth several times over the detection range of the optical sensor on the labware. Repeat the Location detection with a still lightly moist surface.</td>
</tr>
<tr>
<td>Read error of the optical sensor in detecting the pipette tips</td>
<td>Problem when detecting pipette tips.</td>
<td>Turn the tip rack by 180°.</td>
</tr>
<tr>
<td>Read error of the optical sensor in detecting the fluid level</td>
<td>Fluid surface not level (strong meniscus formation).</td>
<td>Carefully tap the rack or plate on the table until the surface is level.</td>
</tr>
<tr>
<td>Read error of the optical sensor in detecting the fluid level</td>
<td>Blisters or foam at the surface.</td>
<td>Remove the blisters/foam.</td>
</tr>
</tbody>
</table>

The detection of the location in plates takes place at the right margin.
In case of a "Location" read error of the optical sensor a dialog with the appropriate correction option is shown.

7.2.2 Dispensing error

In case of doubts about the correctness of the dispensing note the information in the appendix and all information on the selected liquid type.

7.3 Error messages

All software error messages are issued in English. This also applies if "German" is selected in the language setting for the software.

Should you require service, contact your official dealer for Eppendorf products or our sales office. You can find the addresses of our dealers on our website www.eppendorf.com. The addresses of our sales offices are listed on the penultimate page of these Instructions for Use.

<table>
<thead>
<tr>
<th>Code</th>
<th>Symptom/message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message without code</td>
<td>Make sure there is nothing in the gripper: If any labware is held by the gripper arms, remove this item manually; then press OK.</td>
<td>Method run was aborted; gripper is still fixed in the tool holder; before tool holder moves further (e.g., to its home position) the message appears.</td>
<td>If the gripper is still holding any items: 1. Remove the item manually by opening the two gripper arms manually and removing the labware manually. 2. Press the OK button. The gripper expects that the labware has been removed and now moves to the home position.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Message without code</td>
<td>Because all tool holder positions are occupied the tool has to be removed manually: Press OK, open the hood and be prepared to grasp the tool manually as the tool holder will open and drop the tool.</td>
<td>Method run was aborted; dispensing tool is still fixed in the tool holder.</td>
<td>To remove the dispensing tool, follow the instructions.</td>
</tr>
<tr>
<td>0x0600</td>
<td>Tool did not find home</td>
<td>• Home position for the tool is not found.</td>
<td>Insert tool.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No tool inserted.</td>
<td>Check tool.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tool damaged.</td>
<td>Reboot and try again.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PCB damaged.</td>
<td>If error occurs again: Call local Eppendorf Service.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Switch damaged.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tool file does not correspond with tool.</td>
<td></td>
</tr>
<tr>
<td>0x0601</td>
<td>Hardware error</td>
<td>Dosing motor: home switch always on.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td></td>
<td>Dosing device: final position always found</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0607</td>
<td>Hardware error</td>
<td>Dosing motor: steps lost.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td></td>
<td>Dosing device: steps lost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x060D</td>
<td>Hardware error</td>
<td>Dosing motor: steps lost.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td></td>
<td>Dosing device: steps lost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x060E</td>
<td>Tool did not find home</td>
<td>Tool home position is not found.</td>
<td>No tool deployed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tool defective.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PCB defective.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Switch defective.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tool file and tool do not correspond.</td>
</tr>
<tr>
<td>0x060F</td>
<td>Hardware error</td>
<td>Dosing motor: home switch not reached again.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td></td>
<td>Dosing device: final position not reached again.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0709</td>
<td>The named file is invalid for updating the device.</td>
<td>The file contains incorrect control information. File may be damaged while copying.</td>
<td>New file is essential. Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x070A</td>
<td>The cyclic redundancy check for the named file failed.</td>
<td>The file contains incorrect control information. File may be damaged while copying.</td>
<td>New file is essential. Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x070B</td>
<td>Error Flash Loader</td>
<td>The file contains incorrect control information. File may be damaged while copying.</td>
<td>New file is essential. Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x0863</td>
<td>Thermomixer missing</td>
<td>Hardware error</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>0x0864</td>
<td>Thermomixer is not configured</td>
<td>Hardware error</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td>0x0980</td>
<td>Thermomixer does not react</td>
<td>Hardware error</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td>0x0954; 0x0964; 0x0974</td>
<td>The control time on a temperature was exceeded.</td>
<td></td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x0B04</td>
<td>Not enough space on medium</td>
<td>Not enough space on medium to allocate buffer for file or directory.</td>
<td>Make sure that there is enough space on medium.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Make sure that there is enough space on medium.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Either delete some files or replace the medium.</td>
</tr>
<tr>
<td>0x0B05</td>
<td>Error reading file path</td>
<td>• Internal file path conversion error.</td>
<td>Make sure that the file name and path is valid.</td>
</tr>
<tr>
<td>0x0B08</td>
<td>Invalid path or filename</td>
<td>Filename or path is invalid.</td>
<td>Make sure that the file name and path is valid.</td>
</tr>
<tr>
<td>0x0B09</td>
<td>Too many files/directories open</td>
<td>The number of allowed open files and directories has reached its maximum.</td>
<td>Close other open files.</td>
</tr>
<tr>
<td>0x0B0A</td>
<td>File or directory does not exist</td>
<td>File or directory does not exist.</td>
<td>Make sure that the file name and path is valid.</td>
</tr>
<tr>
<td>0x0B0B</td>
<td>No name or directory found</td>
<td>File path is empty.</td>
<td>Reboot and try again.</td>
</tr>
<tr>
<td>0x0B0C</td>
<td>Could not open file</td>
<td>Filename pointer/ID invalid</td>
<td>Reboot and try again.</td>
</tr>
<tr>
<td>0x0B0D</td>
<td>Error opening file or directory.</td>
<td>File may be in use.</td>
<td>Make sure that the file is not in use and try to open it again.</td>
</tr>
<tr>
<td>0x0B0E</td>
<td>Error closing file or directory.</td>
<td>File may be in use.</td>
<td>Make sure that the file is not in use and try to close it again.</td>
</tr>
<tr>
<td>0x0B0F</td>
<td>Error opening/closing file or directory.</td>
<td>File may be in use.</td>
<td>Make sure that the file is not in use and try to open/close it again.</td>
</tr>
<tr>
<td>0x0B10</td>
<td>Error opening file or directory.</td>
<td>• File may be in use, or • file is damaged.</td>
<td>Make sure that the file is not in use and try to open it again.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If error occurs again:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x0B11</td>
<td>Error closing file or directory.</td>
<td>File may be in use.</td>
<td>Make sure that the file is not in use and try to close it again.</td>
</tr>
<tr>
<td>0x0B14</td>
<td>File is in use and cannot be accessed</td>
<td>• Logfile is opened for viewing while the instrument tries to write into the file. • System errors.</td>
<td>Close file; or:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x0B15</td>
<td>Error opening file or directory.</td>
<td>File may be in use.</td>
<td>Make sure that the file is not in use and try to open it again.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0xB16</td>
<td>Error closing file or directory.</td>
<td>File may be in use.</td>
<td>Make sure that the file is not in use and try to close it again.</td>
</tr>
<tr>
<td>0xB17</td>
<td>Error opening file or directory.</td>
<td>File may be in use.</td>
<td>Make sure that the file is not in use and try to open it again.</td>
</tr>
<tr>
<td>0xB18</td>
<td>Error opening file or directory.</td>
<td>File may be in use.</td>
<td>Make sure that the file is not in use and try to open it again.</td>
</tr>
<tr>
<td>0xB40</td>
<td>Error opening file or directory.</td>
<td>File may be in use. Error opening file. Does it exist?</td>
<td>Make sure that the file is not in use or does the file exist and try to open it again.</td>
</tr>
<tr>
<td>0xB41</td>
<td>Error closing file or directory.</td>
<td>File may be in use.</td>
<td>Make sure that the file is not in use and try to close it again.</td>
</tr>
<tr>
<td>0xB42</td>
<td>Error reading file</td>
<td>File may be corrupted.</td>
<td>Use Checkdisk</td>
</tr>
<tr>
<td>0xB43</td>
<td>Error writing file</td>
<td>File may be corrupted.</td>
<td>Use Checkdisk</td>
</tr>
<tr>
<td>0xB44</td>
<td>Illegal file length. Trying to read or write beyond file.</td>
<td>File may be corrupted.</td>
<td>Use Checkdisk</td>
</tr>
<tr>
<td>0xB45</td>
<td>Error deleting file</td>
<td>File may be corrupted.</td>
<td>Use Checkdisk</td>
</tr>
<tr>
<td>0xB46</td>
<td>Error renaming a file</td>
<td>File may be corrupted.</td>
<td>Use Checkdisk</td>
</tr>
<tr>
<td>0xB48</td>
<td>Error creating file. File exists</td>
<td>File name has been edited that already exists.</td>
<td>Use another name for the new file.</td>
</tr>
<tr>
<td>0xB80</td>
<td>Error creating directory. Directory exists!</td>
<td>See error message.</td>
<td>Use another name for the new file.</td>
</tr>
<tr>
<td>0xB81</td>
<td>Error creating directory. Directory exists!</td>
<td>See error message.</td>
<td>Use another name for the new file.</td>
</tr>
<tr>
<td>0xB82</td>
<td>Error getting file entries</td>
<td>Some files may be deleted, or directory is corrupt.</td>
<td>Use Checkdisk</td>
</tr>
<tr>
<td>0xB84</td>
<td>Error getting directory entries</td>
<td>Some files may be deleted, or directory is corrupt.</td>
<td>Use Checkdisk</td>
</tr>
<tr>
<td>0xB85</td>
<td>Error listing files. Number of files in directory is not the same anymore.</td>
<td>Some files may be deleted, or directory is corrupt.</td>
<td>Use Checkdisk</td>
</tr>
<tr>
<td>0xB88</td>
<td>Error deleting directory.</td>
<td>Some files may be deleted, or directory is corrupt.</td>
<td>Use Checkdisk</td>
</tr>
<tr>
<td>BC0</td>
<td>Format aborted by user</td>
<td>See error message.</td>
<td>Error message was an information for the user that he had aborted.</td>
</tr>
<tr>
<td>C01</td>
<td>Volume too large for this tool.</td>
<td>Volume to be dispensed is too large for the selected tool. Possible causes: • Errors in tool files. • Errors in liquid type files.</td>
<td>Call local Eppendorf Application Support.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0x0C02</td>
<td>Volume too small for this tool</td>
<td>Volume to be dispensed is too small for the selected tool. Possible causes: • Errors in tool files. • Errors in liquid type files.</td>
<td>Call local Eppendorf Application.</td>
</tr>
<tr>
<td>0x0C08</td>
<td>Tool dimension unknown</td>
<td>Tool dimension values unknown. Labware outdated or corrupt.</td>
<td>Make sure all labware is of the latest version.</td>
</tr>
<tr>
<td>0x1206 to 0x1210</td>
<td>No message text</td>
<td>Internal error.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x120A</td>
<td>Program aborted by user</td>
<td>User pressed the Abort button during program run.</td>
<td>Error message was an information for the user that he had aborted.</td>
</tr>
<tr>
<td>0x1221</td>
<td>The hood was opened while the program was stopped</td>
<td>See error message.</td>
<td>Close hood.</td>
</tr>
<tr>
<td>0x1222</td>
<td>Transfer allowance was prematurely deactivated during program initialization</td>
<td>See error message.</td>
<td>Start program again.</td>
</tr>
<tr>
<td>0x1223</td>
<td>Internal critical error</td>
<td>Hardware error. Restart of program impossible.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x1243</td>
<td>Lid temperature in program is too high</td>
<td>Illegal value has been detected in program.</td>
<td>Check lid temperature in program editor and start program again.</td>
</tr>
<tr>
<td>0x1244</td>
<td>Lid temperature in program is too low</td>
<td>Illegal value has been detected in program.</td>
<td>Check lid temperature in program editor and start program again.</td>
</tr>
<tr>
<td>0x1245</td>
<td>Block temperature in program is too high</td>
<td>Illegal value has been detected in program.</td>
<td>Check temperature in program editor and start program again.</td>
</tr>
<tr>
<td>0x1246</td>
<td>Block temperature in program is too low</td>
<td>Illegal value has been detected in program.</td>
<td>Check temperature in program and start program again.</td>
</tr>
<tr>
<td>0x1247</td>
<td>Block temperature increment in program is too high</td>
<td>Illegal value has been detected in program.</td>
<td>Check temperature in program and start program again.</td>
</tr>
<tr>
<td>0x1248</td>
<td>Block temperature increment in program is too low</td>
<td>Illegal value has been detected in program.</td>
<td>Check temperature in program and start program again.</td>
</tr>
<tr>
<td>0x1249</td>
<td>Step time in program is too high</td>
<td>Illegal value has been detected in program.</td>
<td>Check step time in program and start program again.</td>
</tr>
<tr>
<td>0x124A</td>
<td>Step time in program is too low</td>
<td>Illegal value has been detected in program.</td>
<td>Check step time in program and start program again.</td>
</tr>
<tr>
<td>0x124B</td>
<td>Time increment in program is too high</td>
<td>Illegal value has been detected in program.</td>
<td>Check time increment in program and start program again.</td>
</tr>
<tr>
<td>0x124C</td>
<td>Time increment in program is too low</td>
<td>Illegal value has been detected in program.</td>
<td>Check time increment in program and start program again.</td>
</tr>
<tr>
<td>0x124D</td>
<td>Too many cycles in Cycle command</td>
<td>Illegal value has been detected in program.</td>
<td>Check value in program and start program again.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0x124E</td>
<td>Not enough cycles in Cycle command</td>
<td>Illegal value has been detected in program.</td>
<td>Check value in program and start program again.</td>
</tr>
<tr>
<td>0x124F</td>
<td>Too many steps within a Cycle</td>
<td>Illegal value has been detected in program.</td>
<td>Check value in program and start program again.</td>
</tr>
<tr>
<td>0x1250</td>
<td>Not enough steps within a cycle</td>
<td>Illegal value has been detected in program.</td>
<td>Check value in program and start program again.</td>
</tr>
<tr>
<td>0x1251</td>
<td>Tempering ramp is too high</td>
<td>Illegal value has been detected in program.</td>
<td>Check value in program and start program again.</td>
</tr>
<tr>
<td>0x1252</td>
<td>Tempering ramp is too low</td>
<td>Illegal value has been detected in program.</td>
<td>Check value in program and start program again.</td>
</tr>
<tr>
<td>0x1253</td>
<td>Gradient is too high. (out of limits)</td>
<td>Illegal value has been detected in program.</td>
<td>Check value in program and start program again.</td>
</tr>
<tr>
<td>0x1259</td>
<td>Error while choosing rack or tube at program start</td>
<td>Neither rack or tube were selected.</td>
<td>Restart program and be sure to select either rack or tube.</td>
</tr>
<tr>
<td>0x1281</td>
<td>Vacuum not reached</td>
<td>The vacuum chamber or rack is leaky or no rack is inserted.</td>
<td>Insert another rack.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In other cases call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x1282</td>
<td>Vacuum not ended</td>
<td>The vacuum was not generated within the defined time.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x1283</td>
<td>Vacuum not ready</td>
<td>No vacuum chamber available or vacuum chamber not ready.</td>
<td>Integrate or connect vacuum chamber, or:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x1284</td>
<td>Temperature unit 1 not ready</td>
<td>Temperature unit 1 is not ready to start or not available.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x1285</td>
<td>Temperature unit 2 not ready</td>
<td>Temperature unit 2 is not ready to start or not available.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x1286</td>
<td>Temperature unit 3 not ready</td>
<td>Temperature unit 3 is not ready to start or not available.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x1289</td>
<td>Carrier: final position in x not found</td>
<td>• Problems in carrier movement in x-axis (sluggish movement or no movement at all).
• Light barrier for carrier in x-axis defective.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x128A</td>
<td>Carrier: final position in x always found</td>
<td>• Problems in carrier movement in x-axis (sluggish movement or no movement at all).
• Light barrier for carrier in x-axis defective.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x128B</td>
<td>Carrier: steps lost in x</td>
<td>• Carrier was touched by the user.
• Sluggishness in carrier movement in x-axis.</td>
<td>Shut down and switch off the instrument; if error reoccurs after switching on and restarting a method run:
Call local Eppendorf Service.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| 0x128C | Carrier: final position in y not found | • Problems in carrier movement in y-axis (sluggish movement or no movement at all).
• Light barrier for carrier in y-axis defective. | ▶ Call Eppendorf Service. |
| 0x128D | Carrier: final position in y always found | • Problems in carrier movement in y-axis (sluggish movement or no movement at all).
• Light barrier for carrier in y-axis defective. | ▶ Call local Eppendorf Service. |
| 0x128E | Carrier: steps lost in y | • Carrier was touched by the user.
• Sluggishness in carrier movement in y-axis | ▶ Shut down and switch off the instrument; if error reoccurs after switching on and restarting a method run:
▶ Call local Eppendorf Service. |
| 0x128F | Carrier: final position 1 in z not found | • Problems in carrier movement in z-axis (sluggish movement or no movement at all).
• Light barrier for carrier in x-axis defective. | ▶ Call local Eppendorf Service. |
| 0x1290 | Carrier: final position 1 in z always found | • Problems in carrier movement in z-axis (sluggish movement or no movement at all).
• Light barrier for carrier in z-axis defective. | ▶ Call local Eppendorf Service. |
| 0x1291 | Carrier: final position 2 in z not found | • Problems in carrier movement in z-axis (sluggish movement or no movement at all).
• Light barrier for carrier in x-axis defective. | ▶ Call local Eppendorf Service. |
| 0x1292 | Carrier: final position 2 in z always found | • Problems in carrier movement in z-axis (sluggish movement or no movement at all).
• Light barrier for carrier in z-axis defective. | ▶ Call local Eppendorf Service. |
| 0x1293 | Carrier: final position in z wrong | • Problems in carrier movement in z-axis (sluggish movement or no movement at all).
• Light barrier for carrier in z-axis defective. | ▶ Call local Eppendorf Service. |
| 0x1294 | Carrier: steps lost in z | • Carrier was touched by the user.
• Sluggishness in carrier movement in z-axis. | ▶ Shut down and switch off the instrument; if error reoccurs after switching on and restarting a method run:
▶ Call local Eppendorf Service. |
epMotion® 5075 with integrated PC and epBlue™ — Operating manual

<table>
<thead>
<tr>
<th>Code</th>
<th>Symptom/message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| 0x1295 | Carrier: steps lost in z before picking up tip | • Tip was still on pipette tool when tool started to pick up a new tip.
 • Tip rack not placed correctly on the worktable.
 • Mechanical problems of carrier. | Remove tips from tools.
 • Place tip rack correctly and plane on the worktable.
 In other cases:
 • Call local Eppendorf Service. |
| 0x1296 | Maximum number of tool cycles exceeded | See error message. | Use a new tool. |
| 0x1297 | Danger of collision | When running the programmed application, the tool carrier system will touch racks or other labware on the worktable; e.g., during pipetting the optical sensor may touch a long tube on the adjacent position; possible reasons:
 • A low plate (microplate) is located next to a high tube rack.
 • The 50 μL or 300 μL tip is programmed to move almost to the bottom of a very long tube with another long tube in the adjacent position. | Program the labware on the worktable in a way that high and low labware are not adjacent.
 • Program the labware in a way that the 30 μL or 300 μL tip does not have to move deeply into a long vessel.
 If possible: use higher volumes in the long vessels.
 If possible: use longer tips for the long vessels. |
<p>| 0x1298 | Tool not calibrated | The actual tool is not calibrated. | Calibrate the actual tool. |
| 0x1299 | Invalid number of samples | Value for Number of Samples not permissible. | Insert an admissible value for Number of Samples. |
| 0x129A | Tip too small | Reagent Transfer: Used tip is too small. | Use a larger tip. |
| 0x129B | Source vessel too small | Reagent Transfer: Used source vessel is too small. | Use a larger vessel. |
| 0x12A0 | Vacuum unit not ready | Vacuum unit cannot be addressed by the software. | Call local Eppendorf Service. |
| 0x12A1 | Vacuum not released | Ventilation of the vacuum unit after switching off the pump is too slow. | Call local Eppendorf Service. |
| 0x12A2 | Check levels in vacuum command: Wells in filter plate not empty | Wells of the filter plate plug while applying vacuum. | Follow the instructions on the control panel display. |
| 0x12A4 | Labware in vacuum manifold is not composed of three parts (filter plate, frame, collection labware) | When applying vacuum three items must be in the vacuum unit (filter plate above vac frame above collection plate or tub). | See explanation in "Cause". |
| 0x12A5 | Well pattern of upper and lower rack do not fit | Vacuum unit: Well geometry of filter plate and collection plate must correspond to each other (e.g., 96 well filter plate and 96 well collection plate). Exception: Collection plate may be replaced by a tub. | See explanation in "Cause". |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Symptom/message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x12B1</td>
<td>Temperature unit in location C1 not ready</td>
<td>Temperature unit 1 cannot be addressed by the software.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x12B2</td>
<td>Temperature unit in location C2 not ready</td>
<td>Temperature unit 2 cannot be addressed by the software.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x12B3</td>
<td>Temperature unit in location C3 not ready</td>
<td>Temperature unit 3 cannot be addressed by the software.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x12B4</td>
<td>Temperature unit in location C1 not active</td>
<td>In <code>wait</code> command the <code>wait for temperature</code> parameter was edited for location C1 although no temperature command for C1 had been edited before.</td>
<td>Insert <code>temperature</code> command before <code>wait</code> command or delete the <code>wait for temperature</code> parameter for this location.</td>
</tr>
<tr>
<td>0x12B5</td>
<td>Temperature unit in location C2 not active</td>
<td>In <code>wait</code> command the <code>wait for temperature</code> parameter was edited for location C2 although no temperature command for C2 had been edited before.</td>
<td>Insert <code>temperature</code> command before <code>wait</code> command or delete the <code>wait for temperature</code> parameter for this location.</td>
</tr>
<tr>
<td>0x12B6</td>
<td>Temperature unit in location C3 not active</td>
<td>In <code>wait</code> command the <code>wait for temperature</code> parameter was edited for location C3 although no temperature command for C3 had been edited before.</td>
<td>Insert <code>temperature</code> command before <code>wait</code> command or delete the <code>wait for temperature</code> parameter for this location.</td>
</tr>
<tr>
<td>0x12B7</td>
<td>Temperature unit in location C1 too hot for labware (temperature command in this method)</td>
<td>The temperature of location C1 (according to a <code>temperature</code> command in this application) is too high for the labware placed on this location.</td>
<td>Select a labware item that is more resistant to high temperatures (e.g. made from polypropylene or polycarbonate).</td>
</tr>
<tr>
<td>0x12B8</td>
<td>Temperature unit in location C2 too hot for labware (temperature command in this method)</td>
<td>The temperature of location C2 (according to a <code>temperature</code> command in this application) is too high for the labware placed on this location.</td>
<td>Select a labware item that is more resistant to high temperatures (e.g. made from polypropylene or polycarbonate).</td>
</tr>
<tr>
<td>0x12B9</td>
<td>Temperature unit in location C3 too hot for labware (temperature command in this method)</td>
<td>The temperature of location C3 (according to a <code>temperature</code> command in this application) is too high for the labware placed on this location.</td>
<td>Select a labware item that is more resistant to high temperatures (e.g. made from polypropylene or polycarbonate).</td>
</tr>
<tr>
<td>0x12BA</td>
<td>Temperature unit in location C1 too hot for labware (temperature command in previous method)</td>
<td>The temperature of location C1 (according to a <code>temperature</code> command in a previous application with parameter <code>keep temperature after method run</code> set active) is too high for the labware placed on this location.</td>
<td>Select a labware item that is more resistant to high temperatures (e.g. made from polypropylene or polycarbonate). Change previous application not to keep temperature after application run.</td>
</tr>
<tr>
<td>0x12BB</td>
<td>Temperature unit in location C2 too hot for labware (temperature command in previous method)</td>
<td>The temperature of location C2 (according to a <code>temperature</code> command in a previous application with parameter <code>keep temperature after method run</code> set active) is too high for the labware placed on this location.</td>
<td>Select a labware item that is more resistant to high temperatures (e.g. made from polypropylene or polycarbonate). Change previous application not to keep temperature after application run.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| 0x12BC | Temperature unit in location C3 too hot for labware (temperature command in previous method) | The temperature of location C3 (according to a temperature command in a previous application with parameter keep temperature after method run set active) is too high for the labware placed on this location. | ▶ Select a labware item that is more resistant to high temperatures (e.g. made from polypropylene or polycarbonate).
▶ Change previous application not to keep temperature after application run. |
<p>| 0x12D0 | Parameter conflict: Elution volume too large for this tool | Sample transfer with elution from filter option: Volume to be aspirated is too large for the tip used. | ▶ Select a tip large enough for picking up the liquid as well as the additional volume of air to be aspirated when using this option. |
| 0x12D1 | Parameter conflict: Elution volume too large for destination tube or well | Option elution from filter: volume is too large for the vessel used. | ▶ Select a tool large enough when using this option. |
| 0x12E0 | Error in system configuration | Error in system configuration. | Correct system configuration. |
| 0x12E1 | Parameter conflict: Prewetting not possible when aspirate from bottom is selected | See error message. | ▶ Change application. |
| 0x12E2 | Parameter conflict: Prewetting not possible when dispense from top is selected | See error message. | ▶ Change application. |
| 0x12E3 | Parameter conflict: Prewetting not possible when elution from filter is selected | A liquid type using a prewetting step (e.g., ethanol 98%) cannot be used in combination with the elution from filter parameter in a sample transfer command. | ▶ Change application. |
| 0x12E4 | Transport of labware: danger of collision | Danger of collision when transporting a stack of several racks. The upper rack would collide with the carrier. | ▶ Do not pile more than 5 racks in a location. |
| 0x12E6 | Level too high | The liquid level would be higher than the vessel after dispensing. | ▶ Adjust the liquid to be dispensed to the vessel. |
| 0x12E7 | Opening the hood is not allowed when putting down tool. Switch off power, then switch on again to restart method. | See error message. | ▶ See error message. |
| 0x12F1 | No communication with thermomixer | Hardware error The thermomixer may be damaged. | Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service |
| 0x12F3 | Thermomixer is too hot for labware (temperature command in this method) | The temperature unit of the thermomixer is too hot for the selected labware | Choose a lower temperature |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Symptom/message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x12F4</td>
<td>The thermomixer is too hot for labware (temperature command in previous method)</td>
<td>The temperature unit of the thermomixer is too hot for the selected labware</td>
<td>Choose a lower temperature</td>
</tr>
<tr>
<td>0x12F7</td>
<td>Waiting for thermomixer</td>
<td>The procedure is waiting for the thermomixer.</td>
<td>Wait until thermomixer function has ended</td>
</tr>
<tr>
<td>0x12F8</td>
<td>The selected mixing speed is not possible with this labware</td>
<td>The mixing speed is not allowed for the selected labware</td>
<td>Select another labware or mixing speed</td>
</tr>
<tr>
<td>0x1500</td>
<td>Too big vessel index in location: ...</td>
<td>A tube is to be accessed for which the index is greater than the number of tubes on the plate/rack/holder.</td>
<td>Error during creation of the application.</td>
</tr>
<tr>
<td>0x1503</td>
<td>Tool not placed ...</td>
<td>Optical sensor: A tool that is needed for the application run was not found on the worktable.</td>
<td>Put the tool on the tool holder of the worktable.</td>
</tr>
<tr>
<td>0x1504</td>
<td><rack name> is not accessible for tools in location ...</td>
<td>Rack is a lower part of a labware stack; therefore, the tool has no access.</td>
<td>Change application so that the rack is accessible.</td>
</tr>
<tr>
<td>0x1509</td>
<td>Liquid volume too large for vessel in location: ...</td>
<td>Total volume supplied in a source vessel is larger than needed or larger than vessel.</td>
<td>Provide less volume in the vessel.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Change application.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When verifying the total volume needed for the source or destination, take into account additional aspirated volume in case of multidispense mode (see Important volume terms for tubes and wells on p. 25).</td>
</tr>
<tr>
<td>0x150A</td>
<td>Liquid volume too low for vessel in location: ...</td>
<td>Total volume supplied by the user in a source vessel is smaller than needed for a sample transfer, reagent transfer or mix command (total volume = volume to be aspirated + remaining volume for this vessel + (in case of multidispense mode:) additional aspirated volume.</td>
<td>Calculate the total volume for the source or destination vessel and select a suitable vessel. Regarding additional aspirated volume in case of multidispense mode, refer to manual (see Important volume terms for tubes and wells on p. 25).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Consider that the software may calculate higher remaining volumes in some cases to avoid crashes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Set liquid detection to off for racks that are on park positions at the beginning of the procedure.</td>
</tr>
<tr>
<td>0x150B</td>
<td>Optical sensor: Liquid volume too low in location: ...</td>
<td>See above (error 0x150A).</td>
<td>See above (error 0x150A).</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| 0x150D | Optical sensor: Plate could not be found in location: ... | The rack programmed for this location could not be found by the optical sensor; possible causes: | • Place the rack onto the locations as edited in the corresponding application; or:
 • Make sure that the rack is placed plane on the worktable surface; or:
 • Rotate rack 180° (front to back) and place it back onto the worktable location; or:
 • Call local Eppendorf Service. |
| | Optical sensor: Rack could not be found in location: ... | • Rack not placed onto location (wrong rack code or wrong rack height).
 • Rack in wrong orientation.
 • Problems related to the optical sensor function. |

| 0x150E | Optical sensor: Tips could not be found in location ... | The tip rack programmed for this location could not be found by the optical sensor; possible causes: | • Place the tip rack onto the locations as edited in the corresponding application; or:
 • Call local Eppendorf Service. |
| | | • Tip rack not placed onto location.
 • Problems related to the optical sensor function. |

| 0x1510 | Optical sensor: Nothing could be found in location: | See error message. | Place the labware programmed for this location on the worktable.
 If error occurs again:
 • Call local Eppendorf Service. |

| 0x1512 | Tip type ... is not placed on the worktable | Tips that are needed according to the application are not available on the worktable. | Place the tip tray programmed for this location on the worktable.
 If error occurs again:
 • Call local Eppendorf Service. |

| 0x1513 | Position is out of range | The position to be addressed by the tool carrier is outside of its available range. | Change application.
 If error occurs again:
 • Call local Eppendorf Service. |

| 0x1514 | Optical sensor: Rack in wrong orientation in location ... | The tub holder has been placed onto the worktable in the wrong direction. | Rotate tub holder 180° and place it back onto the worktable; restart the application. |

| 0x1515 | Tool cannot be used for rack in location ... | Distance between tip cones of the liquid handling tool does not match the distance between vessels (e.g., 24 tubes - rack does not fit the 8-channel tool). | Change application. |

| 0x1516 | No vessel in location: ... | Vessels that are needed according to the application are not available on the worktable (vessel/rack combination). | Place the vessel/rack combination programmed for this location on the worktable.
 If error occurs again:
 • Call local Eppendorf Service. |

<p>| 0x1518 | Rack is not tangible in location: ... | The item cannot be picked up by the gripper. | Change application. |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Symptom/message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| 0x1519 | Tip is too thick for vessel in location: ... | Diameter of the destination vessel is too small for the tip when dispensing the liquid. | ▶ Select other tips or vessels in the application.
▶ Select *dispense from top* in the options of the liquid handling command. |
| 0x151A | Optical sensor: There is a cap on vessel in location: ... | The optical sensor has detected a cap on a vessel when trying to detect a liquid level. | ▶ Remove the cap from the vessel and start the run again. |
| 0x151B | Optical sensor: There is a wrong vessel in location: ... | Relates to vessels that are equipped with a readable code (e.g. Eppendorf tubs): The rack programmed for this location could not be found by the optical sensor; possible causes:
• Wrong vessel.
• Problems related to the optical sensor function. | ▶ Place the vessel onto the location as edited in the corresponding application; or:
▶ Call local Eppendorf Application Support. |
| 0x151C | Optical sensor: Vessel too high for level detection in location: ... | Level detection for very high vessels is not possible. | ▶ Switch off the level detection for this vessel.
▶ Use level detection only for vessel/rack equipment with a total height below 103 mm. |
| 0x151E | Detected volume is out of detection range ... | Normally a system/hardware error (malfunction of the optical sensor); but may also be caused by filling a vessel up to the total vessel height. | ▶ Do not fill vessels above the specified maximum filling volume.
In other cases:
▶ Call local Eppendorf Service. |
<p>| 0x151F | Labware stack too high in location: Maximum pieces which may be piled: | A maximum of 5 racks can be stacked in a location. Placing more than 5 racks in a location. | ▶ Do not stack more than 5 racks in a location. |
| 0x1522 | Transport of the selected labware to this position or stack is not allowed | Different reasons to forbid this transport; main reason: transport of the selected labware to this position or stack might result in instability of the stack, or the resulting stack might become too high. | ▶ Change application. |
| 0x1523 | Labware stack too high in location: xxx Maximum height: xxx mm | Total height of labware stacks (like plates on adapters) is too high. | ▶ Edit application to avoid too high labware stacks. |
| 0x1525 | Filter plate wells are not empty | Using the check levels option in the vacuum command, the optical sensor detected residual liquid in one of the filter wells. | ▶ Follow the instructions on the display screen. |
| 0x1526 | No free position for deposition of tool available | When trying to deposit the dispensing tool after use the tool holder did not find a free position for the tool. | ▶ Clear at least one position on the worktable to accept a dispensing tool. |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Symptom/message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x1528</td>
<td>Method program may not use more than four dispensing tools</td>
<td>See error message.</td>
<td>▶ If more than 4 dispensing tools are needed, divide the application into two applications that use no more than 4 dispensing tools.</td>
</tr>
<tr>
<td>0x1529</td>
<td>Dispensing tool could not be found. Dispensing tool required for this method:...</td>
<td>See error message.</td>
<td>▶ Provide the dispensing tool that is needed on the worktable at its proper position.</td>
</tr>
<tr>
<td>0x152A</td>
<td>Gripper could not be found</td>
<td>See error message.</td>
<td>▶ Provide the gripper on the worktable at its proper position.</td>
</tr>
<tr>
<td>0x152D</td>
<td>Tip too short Select other tips or vessels in the method.</td>
<td>Tip does not reach the liquid level at the beginning or during the course of the liquid handling command.</td>
<td>▶ Select other tips or vessels in the application.</td>
</tr>
<tr>
<td>0x152F</td>
<td>Labware stack too high in location: xxx Maximum pieces which may be piled: 5</td>
<td>A maximum of 5 racks can be piled in a location. After a transport command the labware stack would be too high.</td>
<td>▶ Change application.</td>
</tr>
<tr>
<td>0x1530</td>
<td>Dosing in pile not allowed in location: xxx</td>
<td>See error message.</td>
<td>▶ Change application.</td>
</tr>
<tr>
<td>0x1531</td>
<td>Transport of this pile not allowed in location: xxx</td>
<td>Do not transport a stack.</td>
<td>▶ Change application.</td>
</tr>
<tr>
<td>0x1581</td>
<td>Optical sensor: Liquid level could not be detected in location: ...</td>
<td>Error in level detection.</td>
<td>▶ Repeat measurement.</td>
</tr>
<tr>
<td>0x1602</td>
<td>Program too long</td>
<td>Maximum size of steps is reached.</td>
<td>▶ Delete commands that are not necessary before insert new commands.</td>
</tr>
<tr>
<td>0x1604</td>
<td>Load filename</td>
<td>• Parameters of a command are not loadable.</td>
<td>▶ Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x1700</td>
<td>Liquid volume too low for vessel in location: ...</td>
<td>Total volume supplied by the user in a source vessel is smaller than needed for a sample transfer, reagent transfer or mix command (total volume = volume to be aspirated + remaining volume for this vessel + (in case of multidispense mode:) additional aspirated volume.</td>
<td>▶ Calculate the total volume for the source or destination vessel and select a suitable vessel. Regarding additional aspirated volume in case of multidispense mode, refer to manual (see Important volume terms for tubes and wells on p. 25). ▶ Consider that the software may calculate higher remaining volumes in some cases to avoid crashes. ▶ Set liquid detection to off for racks that are on park positions at the beginning of the procedure.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| 0x1701 | Liquid volume too large for vessel in location:.... | Total volume supplied in a source vessel is larger than needed or larger than vessel. | ▶ Provide less volume in the vessel.
▶ Change application.
▶ When verifying the total volume needed for the source or destination, take into account additional aspirated volume in case of multidispense mode (see Important volume terms for tubes and wells on p. 25). |
| 0x1900 | Program error/system error | Internal program error. | ▶ Restart application run or restart system.
If error occurs again:
▶ Call local Eppendorf Service. |
| 0x1901 | Loading error | File damaged. | ▶ Call local Eppendorf Service. |
| 0x1902 | Loading error | File damaged. | ▶ Call local Eppendorf Service. |
| 0x1903 | Loading error | File damaged. | ▶ Call local Eppendorf Service. |
| 0x1904 | The following labware has been deleted: ... | Edit mode: The worktable was changed after an application had been programmed; thus, the labware defined in a command is no longer available. | ▶ Change the source or destination in the parameter of the respective command in accordance to match the worktable. In this case the pattern also has to be re-edited;
▶ The labware has to be reprogrammed in the worktable. |
| 0x1905 | Loading error | File damaged. | ▶ Call local Eppendorf Service. |
| 0x1906 | Loading error | File damaged. | ▶ Call local Eppendorf Service. |
| 0x1907 | Loading error | File damaged. | ▶ Call local Eppendorf Service. |
| 0x1908 | The method was written with a newer program structure. You must update your software if you want to edit this method | See Error message. | ▶ Update your software, or:
▶ Call local Eppendorf Service. |
| 0x1909 | Loading error | File damaged. | ▶ Call local Eppendorf Service. |
| 0x190A | Program error/system error | Internal program error. | ▶ Restart application run or restart system.
If error occurs again:
▶ Call local Eppendorf Service. |
| 0x190B | Program error/system error | Internal program error. | ▶ Restart application run or restart system.
If error occurs again:
▶ Call local Eppendorf Service. |
<table>
<thead>
<tr>
<th>Code</th>
<th>Symptom/message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x190C</td>
<td>Program error/system error</td>
<td>Internal program error.</td>
<td>▶ Restart application run or restart system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If error occurs again:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x190D</td>
<td>The following labware is not selected in the Labware File window: ...</td>
<td>Edit mode/worktable: The chosen labware is not available in the labware collection that had been selected for your lab. Possible cause for this error message: The labware has been deselected in the Labware File window.</td>
<td>▶ Select the respective labware in the Labware File window. You need to have the appropriate user rights. If you do not have the necessary user rights ask your administrator.</td>
</tr>
<tr>
<td>0x190E</td>
<td>The following tool is not selected in the Labware File Window: ...</td>
<td>Edit mode/procedure: The chosen tool is not available in the labware collection that had been selected for your lab. Possible cause for this error message: The labware has been deselected in the Labware File window.</td>
<td>▶ Select the respective labware in the Labware File window. You need to have the appropriate user rights. If you do not have the necessary user rights ask your administrator.</td>
</tr>
<tr>
<td>0x190F</td>
<td>The following liquid is not selected in the Labware File Window: ...</td>
<td>Edit mode/procedure: The chosen liquid option is not available in the labware collection that had been selected for your lab. Possible cause for this error message: The labware has been deselected in the Labware File window.</td>
<td>▶ This selection could only be deactivate/activate by Eppendorf Service.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x1910</td>
<td>The method was written for another workstation configuration The position of the following labware is not available on this worktable</td>
<td>The position of required labware is not available on this device e.g. you have a 5075 LH and the application was written on a 5075 VAC.</td>
<td>▶ Load the concerned application on a compatible device, or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Modify the application until it matches the available device.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Place the respective labware on another position.</td>
</tr>
<tr>
<td>0x1911</td>
<td>The following labware has been changed, so that the pattern does not fit anymore: xxx</td>
<td>Edit mode/worktable: The chosen labware may not be placed on the selected position anymore. Possible cause for this error message: The application has been written with a former version of the software.</td>
<td>▶ Either change the order or contents of the “Equipped Holder” combination back to the original. Or change the pattern in the command.</td>
</tr>
<tr>
<td>0x1980 to 0x1983</td>
<td>Program error/system error</td>
<td>Internal program error.</td>
<td>▶ Restart application run or restart system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If error occurs again:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Call local Eppendorf Service.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0x1984</td>
<td>No parameter for tool/liquid.</td>
<td>Edit mode/parameter in command Sample Transfer: A special file for the selected combination of tool and liquid type is not available.</td>
<td>▸ Select another tool or another liquid type.</td>
</tr>
<tr>
<td>0x1985</td>
<td>Program error/system error</td>
<td>Internal program error.</td>
<td>▸ Restart application run or restart system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If error occurs again:</td>
<td>▸ Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x1986</td>
<td>Program error/system error</td>
<td>Internal program error.</td>
<td>▸ Restart application run or restart system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If error occurs again:</td>
<td>▸ Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x1A02</td>
<td>The name is already used for another labware</td>
<td>Edit mode/labware: The same name has been defined for a different rack or another labware item.</td>
<td>▸ Enter a different name.</td>
</tr>
<tr>
<td>0x1A03</td>
<td>This position is not available for the selected labware</td>
<td>Edit mode/worktable: Certain worktable positions are not allowed for certain labware (e.g., tips can only be placed in the rear of the worktable).</td>
<td>▸ Place the selected labware in another location.</td>
</tr>
<tr>
<td>0x1A04</td>
<td>The selected labware may not be stacked on top of labware already placed</td>
<td>Edit mode/worktable: Building of labware stacks on the worktable is restricted to certain labware combinations (e.g., thermorack above thermorack does not make sense).</td>
<td>▸ See "Cause".</td>
</tr>
<tr>
<td>0x1A05</td>
<td>Maximum number of labware stacked: 5</td>
<td>Edit mode/worktable: Certain labware build a pile which contains too many when placed on certain labware.</td>
<td>Place the selected labware in another location.</td>
</tr>
<tr>
<td>0x1A06</td>
<td>Labware stack too high in location: xxx Maximum height: xxx mm</td>
<td>Edit mode/worktable: Labware stacks on the worktable may not exceed a maximum height limit (e.g., plates on adapters is allowed; reservoir holder on adapters is not allowed because the stack would become too high).</td>
<td>▸ See "Cause".</td>
</tr>
<tr>
<td>0x1A10</td>
<td>8-channel tool cannot be used for this source rack</td>
<td>Edit mode/parameter in command Sample Transfer: Source rack does not fit to 8-channel-tool (e.g.: 24-well plate or tube rack with 24 positions).</td>
<td>▸ Choose another rack or another tool.</td>
</tr>
<tr>
<td>0x1A11</td>
<td>8-channel tool cannot be used for this destination rack.</td>
<td>Edit mode/parameter in command Sample Transfer: Destination rack does not fit the 8-channel tool (e.g. 24-well plate or tube rack with 24 positions).</td>
<td>▸ Choose another rack or another tool.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0x1A12</td>
<td>No source or destination selected</td>
<td>Edit mode/parameter in command Sample Transfer: Source or destination rack has not been selected.</td>
<td>▶ Select source or destination, respectively.</td>
</tr>
<tr>
<td>0x1A15</td>
<td>Invalid entry for movement blow (0 ... 100)</td>
<td>Edit mode/parameter in transfer command: A value beyond the allowed range has been entered for the parameter Movement Blow.</td>
<td>▶ Enter a value between 0 and 100%.</td>
</tr>
<tr>
<td>0x1A16</td>
<td>Invalid entry for delay blow (0 ... 9999)</td>
<td>Edit mode/parameter in transfer command: A value beyond the allowed range has been entered for the parameter Delay Blow.</td>
<td>▶ Enter a value between 0 and 9999 msec.</td>
</tr>
<tr>
<td>0x1A17</td>
<td>Invalid entry for speed aspiration (0.2 ... 110)</td>
<td>Edit mode/parameter in transfer command: A value beyond the allowed range has been entered for the parameter speed aspiration.</td>
<td>▶ Enter a value between 0.2 and 110 mm/sec.</td>
</tr>
<tr>
<td>0x1A19</td>
<td>Invalid entry for speed blow (0.2 ... 110)</td>
<td>Edit mode/parameter in transfer command: A value beyond the allowed range has been entered for the parameter Speed Blow.</td>
<td>▶ Enter a value between 0.2 and 110 mm/sec.</td>
</tr>
<tr>
<td>0x1A1A</td>
<td>Invalid entry for initial stroke (0 ... 100)</td>
<td>Edit mode/parameter in transfer command: a value beyond the allowed range has been entered for the parameter initial stroke.</td>
<td>▶ Enter a value between 0 and 100%.</td>
</tr>
<tr>
<td>0x1A20</td>
<td>8-channel tool cannot be used for this source rack</td>
<td>Edit mode/parameter in command Reagent Transfer: Source rack does not fit the 8-channel tool (e.g., 24-well plate or tube rack with 24 positions).</td>
<td>▶ Choose another rack or another tool.</td>
</tr>
<tr>
<td>0x1A21</td>
<td>8-channel tool cannot be used for this destination rack</td>
<td>Edit mode/parameter in command Reagent Transfer: Destination rack does not fit the 8-channel tool (e.g., 24-well plate or tube rack with 24 positions).</td>
<td>▶ Choose another rack or another tool.</td>
</tr>
<tr>
<td>0x1A22</td>
<td>No source or destination selected</td>
<td>Edit mode/parameter in command Reagent Transfer: Source or destination rack has not been selected.</td>
<td>▶ Select source or destination, respectively.</td>
</tr>
<tr>
<td>0x1A30</td>
<td>8-channel tool cannot be used for this source rack</td>
<td>Edit mode/parameter in command Pool: Source rack does not fit the 8-channel tool (e.g., 24-well plate or tube rack with 24 positions).</td>
<td>▶ Choose another rack or another tool.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>0x1A31</td>
<td>8-channel tool cannot be used for this destination rack</td>
<td>Edit mode/parameter in command Pool: Destination rack does not fit the 8-channel tool (e.g. 24-well plate or tube rack with 24 positions).</td>
<td>▶ Choose another rack or another tool.</td>
</tr>
<tr>
<td>0x1A32</td>
<td>No source or destination selected</td>
<td>Edit mode/parameter in command Pool: Source or destination rack has not been selected.</td>
<td>▶ Select source or destination, respectively.</td>
</tr>
<tr>
<td>0x1A40</td>
<td>8-channel tool cannot be used for this source rack</td>
<td>Edit mode/parameter in command PoolOneDest: Source rack does not fit the 8-channel tool (e.g., 24-well plate or tube rack with 24 positions).</td>
<td>▶ Choose another rack or another tool.</td>
</tr>
<tr>
<td>0x1A41</td>
<td>8-channel tool cannot be used for this destination rack</td>
<td>Edit mode/parameter in command PoolOneDest: Destination rack does not fit the 8-channel tool (e.g., 24-well plate or tube rack with 24 positions).</td>
<td>▶ Choose another rack or another tool.</td>
</tr>
<tr>
<td>0x1A42</td>
<td>No source or destination selected</td>
<td>Edit mode/parameter in command PoolOneDest: Source or destination rack has not been selected.</td>
<td>▶ Select source or destination, respectively.</td>
</tr>
<tr>
<td>0x1A50</td>
<td>8-channel tool cannot be used for this source rack</td>
<td>Edit mode/parameter in command Dilute: Source rack does not fit the 8-channel tool (e.g., 24-well plate or tube rack with 24 positions).</td>
<td>▶ Choose another rack or another tool.</td>
</tr>
<tr>
<td>0x1A51</td>
<td>8-channel tool cannot be used for this destination rack</td>
<td>Edit mode/parameter in command Dilute: Destination rack does not fit the 8-channel tool (e.g., 24-well plate or tube rack with 24 positions).</td>
<td>▶ Choose another rack or another tool.</td>
</tr>
<tr>
<td>0x1A52</td>
<td>No source or destination selected</td>
<td>Edit mode/parameter in command Dilute: Source or destination rack has not been selected.</td>
<td>▶ Select source or destination, respectively.</td>
</tr>
<tr>
<td>0x1A61</td>
<td>8-channel tool cannot be used for this rack</td>
<td>Edit mode/parameter in command Mix: Rack does not fit the 8-channel tool (e.g., 24-well plate or tube rack with 24 positions).</td>
<td>▶ Choose another rack or another tool.</td>
</tr>
<tr>
<td>0x1A62</td>
<td>No rack selected</td>
<td>Edit mode/parameter in command Mix: Rack has not been selected.</td>
<td>▶ Select rack, respectively.</td>
</tr>
<tr>
<td>0x1A65</td>
<td>Invalid entry for speed (0.2 ... 110)</td>
<td>Edit mode/parameter in command Mix: A value beyond the allowed range has been entered for the parameter Speed.</td>
<td>Enter a value between 0.2 and 110 mm/sec.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>0x1A70</td>
<td>This position is already occupied</td>
<td>Edit mode/pattern: When editing the pattern you have tried to select a certain position that is already occupied.</td>
<td>Follow the direction of the edited pattern and move to a different position.</td>
</tr>
<tr>
<td>0x1A73</td>
<td>Delete function only available for last entry</td>
<td>Edit mode/pattern: Deleting a pattern position you just entered is only possible as long as you did not leave the source (or the destination, respectively).</td>
<td>If you have to delete this position which is no more available you must edit a new pattern from the beginning (softkey new pattern or cancel).</td>
</tr>
<tr>
<td>0x1A75</td>
<td>A rack may only have 384 positions</td>
<td>Edit mode/pattern: Not enough software memory available for editing the pattern. Maximum possible positions are 384.</td>
<td>Choose another rack, because the chosen rack has too many positions.</td>
</tr>
<tr>
<td>0x1A76</td>
<td>8-channel tool cannot be used for this module rack</td>
<td>Edit mode/pattern: Rack does not fit the 8-channel tool (e.g., Tubs + Modules (equip) + Holders-combination with positions all less than 8 in Modules).</td>
<td>Choose another rack or another tool.</td>
</tr>
<tr>
<td>0x1A77</td>
<td>No module rack or tubes found</td>
<td>Edit mode/pattern: Rack does not have any positions (e.g., Tubs + Modules (equip) + Holders-combination with positions all less than 1 in Modules).</td>
<td>Choose another rack.</td>
</tr>
<tr>
<td>0x1A78</td>
<td>Number of tubes not supported</td>
<td>Edit mode/pattern: One or more Modules have 3, 5, 6, 7 or more than 8 positions. This is not supported.</td>
<td>Choose another rack.</td>
</tr>
<tr>
<td>0x1A80</td>
<td>Invalid entry for minutes (0 ... 99)</td>
<td>Edit mode/parameter in command Wait: A value beyond the allowed range has been entered for the parameter minutes.</td>
<td>Enter a value between 0 and 99 minutes.</td>
</tr>
<tr>
<td>0x1A81</td>
<td>Invalid entry for seconds (0 ... 59)</td>
<td>Edit mode/parameter in command Wait: A value beyond the allowed range has been entered for the parameter seconds.</td>
<td>Enter a value between 0 and 59 seconds.</td>
</tr>
<tr>
<td>0x1A90</td>
<td>Selecting more than one rack as Source or as Destination: All source racks (or all destination racks, resp.) must have the same well pattern</td>
<td>Edit mode/parameter in transfer command: The selected labwares have a different amount of wells.</td>
<td>Choose another rack.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0x1A91</td>
<td>Selecting more than one rack as Source or as Destination:</td>
<td>Edit mode/parameter in transfer command:</td>
<td>Enter a value between 0 and 110 degrees.</td>
</tr>
<tr>
<td></td>
<td>Rack was already selected as source rack (or as destination rack, resp.)</td>
<td>A labware may not be selected more than once.</td>
<td></td>
</tr>
<tr>
<td>0x1AB0</td>
<td>Invalid entry for minutes (0 ... 99)</td>
<td>Edit mode/parameter in command <code>Vacuum</code>:</td>
<td>Enter a value between 0 and 99 minutes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A value beyond the allowed range has been entered for the parameter <code>minutes</code>.</td>
<td></td>
</tr>
<tr>
<td>0x1AB1</td>
<td>Invalid entry for seconds (0 ... 59)</td>
<td>Edit mode/parameter in command <code>Vacuum</code>:</td>
<td>Enter a value between 0 and 59 seconds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A value beyond the allowed range has been entered for the parameter <code>seconds</code></td>
<td></td>
</tr>
<tr>
<td>0x1AB2</td>
<td>Invalid entry for vacuum pressure (1 ... 90) kPa and (10 ... 900) mbar resp.</td>
<td>Edit mode/parameter in command <code>Vacuum</code>:</td>
<td>Enter a value between 0 and 59 seconds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A value beyond the allowed range has been entered for the parameter <code>seconds</code></td>
<td></td>
</tr>
<tr>
<td>0x1AE0</td>
<td>Invalid entry for mixing speed (0 ... 2000)</td>
<td>Edit mode / parameter in command "Thermomixer":</td>
<td>Enter a value between 0 and 2000 rpm</td>
</tr>
<tr>
<td>0x1AE1</td>
<td>Invalid entry for minutes (0 ... 120)</td>
<td>Edit mode / parameter in command "Thermomixer":</td>
<td>Enter a value between 0 and 120 minutes</td>
</tr>
<tr>
<td>0x1AE2</td>
<td>Invalid entry for seconds (0 ... 59)</td>
<td>Edit mode / parameter in command "Thermomixer":</td>
<td>Enter a value between 0 and 59 seconds</td>
</tr>
<tr>
<td>0x1AE3</td>
<td>Invalid entry for temperature (4 ... 110)</td>
<td>Edit mode / parameter in command "Thermomixer":</td>
<td>Enter a value between 4 and 110 degrees</td>
</tr>
<tr>
<td>0xC00 to 0xC09</td>
<td>File could not be read</td>
<td>File damaged.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0xC0B</td>
<td>Sample number too large</td>
<td>Run mode:</td>
<td>Start the application again and enter a lower number of samples; or:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The number of samples you entered will fill more than one rack (source or destination, respectively) based on the programmed pattern.</td>
<td>Enter the edit mode and program a pattern that together with the number of samples you want to run will not extend beyond one rack.</td>
</tr>
<tr>
<td>0xC0C</td>
<td>File could not be read</td>
<td>File damaged.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0xC0D</td>
<td>You must clear old pattern first</td>
<td>Edit mode/pattern: You tried to change a stored pattern before deleting the old pattern.</td>
<td>Delete the old pattern by pressing the button new pattern.</td>
</tr>
<tr>
<td>0xC0E</td>
<td>You must go forward</td>
<td>Edit mode/pattern: When entering the pattern, the order of edited locations in the source (or destination, respectively) must be from left to right or from the top of the pattern downwards (i.e., move only in columns or in rows).</td>
<td>See explanation in "Cause".</td>
</tr>
<tr>
<td>0xC0F</td>
<td>You may only move horizontally or vertically</td>
<td>Edit mode/pattern: When entering the pattern the order of edited locations in the source (or destination, resp.) must be from the left to right or from top of the pattern downwards (i.e., move only in columns or in rows). Note: Error message may also occur when working with an 8-channel tool and editing another position than the upper ones (see error code 0xC1F).</td>
<td>See explanation in "Cause".</td>
</tr>
<tr>
<td>0xC10</td>
<td>Pattern for replicates of first sample too complex</td>
<td>Edit mode/pattern: The pattern algorithm cannot handle this pattern.</td>
<td>Enter a simpler pattern if possible. In case this is not possible: Call local Eppendorf Application Support.</td>
</tr>
<tr>
<td>0xC11</td>
<td>Pattern too complex</td>
<td>Edit mode/pattern: The pattern algorithm cannot handle this pattern. Note: See note in error 0xC0F.</td>
<td>Enter a simpler pattern if possible. In case this is not possible: Call local Eppendorf Application Support.</td>
</tr>
<tr>
<td>0xC12</td>
<td>Program error/system error</td>
<td>Internal program error.</td>
<td>Restart application run or restart system. If error occurs again: Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0xC13</td>
<td>Program error/system error</td>
<td>Internal program error.</td>
<td>Restart application run or restart system. If error occurs again: Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0xC14</td>
<td>Pattern must fit in rows or columns</td>
<td>Edit mode/pattern: The basic unit of the pattern you tried to enter extends beyond a row or a column. This cannot be handled by the pattern algorithm.</td>
<td>Enter a simpler pattern if possible. In case this is not possible: Call local Eppendorf Application Support.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>0xC15</td>
<td>Pattern too complex</td>
<td>Edit mode/pattern:</td>
<td>▶ Enter a simpler pattern if possible.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The pattern algorithm cannot handle this pattern.</td>
<td>▶ In case this is not possible: Call local Eppendorf Service.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: See note in error 0xC0F.</td>
<td></td>
</tr>
<tr>
<td>0xC16</td>
<td>This position is already occupied</td>
<td>Edit mode/pattern:</td>
<td>▶ Following the edited pattern move to a different rack position.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When editing the pattern you have tried to select a certain rack</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>position that is already occupied.</td>
<td></td>
</tr>
<tr>
<td>0xC17</td>
<td>You must start with the source</td>
<td>Edit mode/pattern:</td>
<td>▶ See explanation in "Cause".</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When editing a pattern you must start with the source.</td>
<td></td>
</tr>
<tr>
<td>0xC18</td>
<td>Please enter a source now</td>
<td>Edit mode/pattern:</td>
<td>▶ Enter the same number of replicates for all sources you edit when</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In the destination rack, you tried to enter more replicates than you</td>
<td>programming a pattern.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>had sources.</td>
<td></td>
</tr>
<tr>
<td>0xC19</td>
<td>Please enter a destination now</td>
<td>Edit mode/pattern:</td>
<td>▶ Edit the destination position(s) for the selected source position.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When having selected a source in the “Sample Transfer” command</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>you first have to enter a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>destination for this source before moving to the next source position</td>
<td></td>
</tr>
<tr>
<td>0xC1A</td>
<td>No more positions available (limited by Number of</td>
<td>Edit mode/pattern:</td>
<td>▶ Select a pattern that fits the programmed Number of</td>
</tr>
<tr>
<td></td>
<td>Samples command)</td>
<td>Editing further positions is not possible because the limit set in</td>
<td>Samples command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the Number of Samples command would be exceeded.</td>
<td></td>
</tr>
<tr>
<td>0xC1B</td>
<td>Program error/system error</td>
<td>Internal program error.</td>
<td>▶ Restart application run or restart system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ If error occurs again:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0xC1C</td>
<td>Program error/system error</td>
<td>Internal program error.</td>
<td>▶ Restart application run or restart system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ If error occurs again:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0xC1D</td>
<td>Program error/system error</td>
<td>Internal program error.</td>
<td>▶ Restart application run or restart system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ If error occurs again:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0xC1E</td>
<td>Pattern for reagent transfer: source can be chosen</td>
<td>Edit mode/pattern for command Reagent Transfer:</td>
<td>▶ Enter the source only once. In case this does not meet your</td>
</tr>
<tr>
<td></td>
<td>only once</td>
<td>After having entered the source and the destinations for the</td>
<td>requirements for this application consider selecting command</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reagent transfer you cannot select an additional source.</td>
<td>Reagent Transfer instead of Sample Transfer; or:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>▶ Call local Eppendorf Application Support.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>0x1C1F</td>
<td>Pattern with 8-channel tool: Please edit upper position of this tool</td>
<td>Edit mode/pattern with 8-channel tool: Only the upper positions of the 8-channel tools can be selected.</td>
<td>See explanation in "Cause".</td>
</tr>
<tr>
<td>0x1C20</td>
<td>Pattern for sample transfer: only one position per sample on source</td>
<td>Edit mode/pattern for command Sample Transfer: Before selecting a second source position, you have to edit the destination for the first source position.</td>
<td>Enter destination for the source you just selected; afterwards, you can edit the next source position.</td>
</tr>
<tr>
<td>0x1C21</td>
<td>In source rack further positions cannot be edited because positions in destination rack are already occupied</td>
<td>Edit mode/pattern: Selecting further source positions would require a second destination rack according to the pattern you edited.</td>
<td>Edit a pattern that does not require more than one destination rack per command. To use more destination racks, create additional commands.</td>
</tr>
<tr>
<td>0x1C22</td>
<td>Pattern for pool one dest: destination can be chosen only once</td>
<td>Edit mode/pattern for command PoolOneDest: After having entered the sources and the destination, you cannot select an additional destination.</td>
<td>Enter the destination only once. In case this does not meet your requirements for this application, consider selecting command Pool instead of PoolOneDest; or: Call local Eppendorf Application Support.</td>
</tr>
<tr>
<td>0x1C23</td>
<td>Pattern for dilute: only one position per sample on source</td>
<td>Edit mode/pattern for command Dilute: Before selecting a second source position, you have to edit the destination for the first source position.</td>
<td>Enter destination for the source you just selected; afterwards, you can edit the next source position.</td>
</tr>
<tr>
<td>0x1C25</td>
<td>Pattern for pool: only one position per sample on destination</td>
<td>Edit mode/pattern for command Pool: Before selecting a second destination position, you have to edit the next source positions to be pooled into this destination.</td>
<td>Enter sources for the next destination position; afterwards, you can edit the next destination position.</td>
</tr>
<tr>
<td>0x1C26</td>
<td>Pattern for Reagent Transfer: not enough source positions</td>
<td>Run mode: To provide enough reagent volume for the number of samples you entered, the selected reagent source positions must be higher.</td>
<td>Start the application again and enter a lower number of samples; or: Enter the edit mode and program more reagent source positions in the pattern. Keep in mind that the selected reagent source positions may not extend beyond one rack.</td>
</tr>
<tr>
<td>0x2025</td>
<td>Bottom tolerance too big</td>
<td>Bottom tolerance too big.</td>
<td>Use a smaller value.</td>
</tr>
<tr>
<td>0x2026</td>
<td>Bottom tolerance too small</td>
<td>Bottom tolerance too small.</td>
<td>Use a bigger value.</td>
</tr>
<tr>
<td>0x2027</td>
<td>(SVC_ILLEGAL_NODE_TYPE)</td>
<td>Internal error.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0x2100</td>
<td>Program error/system error</td>
<td>Internal program error.</td>
<td>Restart application run or restart system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If error occurs again:</td>
</tr>
<tr>
<td>0x2101</td>
<td>Tool not defined.</td>
<td>Parameter Pipet. Tool was not edited in the application.</td>
<td>See explanation in "Cause".</td>
</tr>
<tr>
<td>0x2102</td>
<td>Tool not selected in the Labware File Window</td>
<td>The pipette tool you edited in the application is not selected in the Labware File Window and therefore is not available for programming.</td>
<td>This selection could only be deactivate/activated by Eppendorf Service. Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x2104</td>
<td>Tips not edited in worktable/procedure</td>
<td>Tips were edited in the procedure of the application, but they were not edited in the worktable (e.g., filter tips <-> tips without filter).</td>
<td>Edit the tips that you programmed in the procedure in the worktable.</td>
</tr>
<tr>
<td>0x2105</td>
<td>Parameter conflict: Start volume greater than filling volume of source tube or well</td>
<td>The Volume and Source parameters of the source vessel do not match (Volume is higher than the maximum filling volume of the source vessel).</td>
<td>Edit Volume and Source in the worktable so that Volume is covered by the maximum filling volume of the source vessel.</td>
</tr>
<tr>
<td>0x2106</td>
<td>Parameter conflict: Start volume greater than filling volume of destination tube or well</td>
<td>The Volume and Destination parameters of the destination vessel do not match (Volume is higher than the maximum filling volume of the destination vessel).</td>
<td>Edit Volume and Destination in the worktable so that Volume is covered by the maximum filling volume of the destination vessel.</td>
</tr>
<tr>
<td>0x2107</td>
<td>Volume not defined</td>
<td>Parameter Volume was not edited in the application.</td>
<td>See explanation in "Cause".</td>
</tr>
<tr>
<td>0x2108</td>
<td>Parameter conflict: Volume too small for this tool</td>
<td>The Volume and Pipet. Tool parameters of the application do not match (Volume is smaller than the lower limit of the tool volume range).</td>
<td>Edit Volume and Pipet. Tool so that Volume is covered by the volume range of the pipette tool.</td>
</tr>
<tr>
<td>0x2109</td>
<td>Parameter conflict: Volume too large for this tool</td>
<td>The Volume and Pipet. Tool parameters of the application do not match (Volume is higher than the upper limit of the tool volume range).</td>
<td>Edit Volume and Pipet. Tool so that Volume is covered by the volume range of the pipette tool.</td>
</tr>
<tr>
<td>0x210A</td>
<td>Parameter conflict: volume greater than filling volume of source tube or well</td>
<td>The Volume and Source parameters of the application do not match (Volume is higher than the maximum filling volume of the source vessel).</td>
<td>Edit Volume and Source so that Volume is covered by the maximum filling volume of the source vessel.</td>
</tr>
<tr>
<td>0x210B</td>
<td>Parameter conflict: volume greater than filling volume of destination tube or well</td>
<td>The Volume and Destination parameters of the application do not match (Volume is higher than the maximum filling volume of the destination vessel).</td>
<td>Edit Volume and Destination so that Volume is covered by the maximum filling volume of the destination vessel.</td>
</tr>
<tr>
<td>0x210D</td>
<td>Source rack not defined</td>
<td>Parameter Source was not edited in the application.</td>
<td>See explanation in "Cause".</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0x210E</td>
<td>Source rack not edited in worktable</td>
<td>The source rack you edited in the procedure of the application has been removed from the worktable.</td>
<td>Edit the rack that you programmed in the procedure as Source in the worktable, or edit a different source rack in the application.</td>
</tr>
<tr>
<td>0x210F</td>
<td>Source rack not selected in the Labware File Window</td>
<td>The source rack you edited in the application is not selected or removed in the Labware File Window and therefore is not available for programming.</td>
<td>Select the rack in the Labware File Window or edit a different rack in the application.</td>
</tr>
<tr>
<td>0x2110</td>
<td>Destination rack not defined Parameter Source was not edited in the application.</td>
<td></td>
<td>See explanation in "Cause".</td>
</tr>
<tr>
<td>0x2111</td>
<td>Destination rack not edited in worktable</td>
<td>Destination rack was edited in the procedure of the application, but it was not edited in the worktable.</td>
<td>Edit the rack that you programmed in the procedure as Destination in the worktable or edit a different destination rack in the application.</td>
</tr>
<tr>
<td>0x2112</td>
<td>Destination rack not selected in the Labware File Window</td>
<td>The destination rack you edited in the application is not selected or removed in the Labware File Window and therefore is not available for programming.</td>
<td>Select the rack in the Labware File Window or edit a different rack in the application.</td>
</tr>
<tr>
<td>0x2113</td>
<td>Pattern not defined</td>
<td>Parameter Pattern was not edited in the application.</td>
<td>See explanation in "Cause".</td>
</tr>
<tr>
<td>0x2114</td>
<td>Loading error (invalid entry in pattern)</td>
<td>Normally a system error; but may also be caused by editing a pattern without destination positions; or: File damaged.</td>
<td>Edit a pattern with source and destination positions. In other cases: Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x211B</td>
<td>Liquid type not defined</td>
<td>Parameter Liquid Type was not edited in the application.</td>
<td>Choose a "Liquid Type" for the Liquid Handling Command.</td>
</tr>
<tr>
<td>0x211C</td>
<td>Liquid type not selected in the Labware File Window</td>
<td>The Liquid Type you choose in the application is not selected or removed in the Labware File Window and therefore is not available for programming.</td>
<td>This selection could only be deactivate/activated by Eppendorf Service. Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x211D</td>
<td>Mixing cycles in source not defined</td>
<td>Parameter No. of Cycles in a mix procedure was not edited for the source in the application (mix procedure as defined in a command Mix or as part of a liquid transfer command via parameter Options).</td>
<td>See explanation in "Cause".</td>
</tr>
<tr>
<td>0x211E</td>
<td>Invalid entry for mixing cycles in source (1 ... 99)</td>
<td>Entry for the No. of Cycles parameter in a mix procedure for source vessels was higher than the max. limit (1 up to 99 cycles) (mix procedure as defined in a command Mix or as part of a liquid transfer command via parameter Options).</td>
<td>Enter a number between 1 and 99 for the No. of Cycles parameter.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0x211F</td>
<td>Invalid entry for mixing speed in source (1 ... 10)</td>
<td>Entry for the parameter Speed in a mix procedure for source vessels was higher than the max. limit (1 up to 10) (mix procedure as defined in a command Mix or as part of a liquid transfer command via parameter Options).</td>
<td>▶ Enter a number between 1 and 10 for the Speed parameter.</td>
</tr>
<tr>
<td>0x2120</td>
<td>Mixing volume in source not defined</td>
<td>Parameter Volume in a mix procedure for source vessels was not edited in the application (mix procedure as defined in a command Mix or as part of a liquid transfer command via parameter Options).</td>
<td>▶ See explanation in "Cause".</td>
</tr>
<tr>
<td>0x2121</td>
<td>Parameter conflict: mixing volume in source too large for this tool</td>
<td>The Volume and Pipet. Tool parameters of a mix procedure for source vessels are not in agreement (Volume is higher than the upper limit of the tool’s volume range) (mix procedure as defined in a command Mix or as part of a liquid transfer command via parameter Options).</td>
<td>▶ Edit Volume and Pipet. Tool so that Volume is within pipette tool's volume range.</td>
</tr>
<tr>
<td>0x2122</td>
<td>Parameter conflict: mixing volume in source too small for this tool</td>
<td>The Volume and Pipet. Tool parameters of a mix procedure for source vessels do not match (Volume is less than the lower limit of the tool's volume range) (mix procedure as defined in a command Mix or as part of a liquid transfer command via parameter Options).</td>
<td>▶ Edit Volume and Pipet. Tool so that Volume is within the pipette tool's volume range.</td>
</tr>
<tr>
<td>0x2123</td>
<td>Parameter conflict: mixing volume in source greater than filling volume of source tube or well</td>
<td>The Volume and Source parameters of a mix procedure in the application do not match (Volume is higher than the maximum filling volume of the source vessel) (mix procedure as defined in a command Mix or as part of a liquid transfer command via parameter Options).</td>
<td>▶ Edit Volume and Source so that Volume is within the allowable filling volume of the source vessel.</td>
</tr>
<tr>
<td>0x2124</td>
<td>Mixing cycles in destination not defined</td>
<td>Parameter No. of Cycles in a mix procedure for destination vessels was not edited in the application (mix procedure as part of a liquid transfer command via parameter Options)</td>
<td>▶ See explanation in "Cause".</td>
</tr>
<tr>
<td>0x2125</td>
<td>Invalid entry for mixing cycles in destination (1 ... 99)</td>
<td>Entry for the parameter No. of Cycles in a mix procedure for destination vessels was higher than the max. limit (1 up to 99 cycles) (mix procedure as part of a liquid transfer command via parameter Options).</td>
<td>▶ Enter a number between 1 and 99 for the No. of Cycles parameter.</td>
</tr>
</tbody>
</table>
epMotion® 5075 with integrated PC and epBlue™ — Operating manual

<table>
<thead>
<tr>
<th>Code</th>
<th>Symptom/message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x2126</td>
<td>Invalid entry for mixing speed in destination (1 ... 10)</td>
<td>Entry for the parameter <code>Speed</code> in a mix procedure for destination vessels was higher than the max. limit (1 up to 10) (mix procedure as part of a liquid transfer command via parameter Options).</td>
<td>- Enter a number between 1 and 10 for the <code>Speed</code> parameter.</td>
</tr>
<tr>
<td>0x2127</td>
<td>Mixing volume in destination not defined</td>
<td>Parameter <code>Volume</code> in a mix procedure for destination vessels was not edited in the application (mix procedure as part of a liquid transfer command via parameter Options).</td>
<td>- See explanation in “Cause”.</td>
</tr>
<tr>
<td>0x2128</td>
<td>Parameter conflict: mixing volume in destination too large for this tool</td>
<td>The <code>Volume</code> and <code>Pipet. Tool</code> parameters in a mix procedure for destination vessels do not match (<code>Volume</code> is higher than the upper limit of the tool volume range) (mix procedure as part of a liquid transfer command via parameter Options).</td>
<td>- Edit <code>Volume</code> and <code>Pipet. Tool</code> so that <code>Volume</code> is within the pipette tool's volume range.</td>
</tr>
<tr>
<td>0x2129</td>
<td>Parameter conflict: mixing volume in destination too small for this tool</td>
<td>The <code>Volume</code> and <code>Pipet. Tool</code> in a mix procedure for destination vessels do not match (<code>Volume</code> is lower than the minimum allowed volume) (mix procedure as part of a liquid transfer command via parameter Options).</td>
<td>- Edit <code>Volume</code> and <code>Pipet. Tool</code> so that <code>Volume</code> is within the volume range of the pipette tool.</td>
</tr>
<tr>
<td>0x212A</td>
<td>Parameter conflict: mixing volume in destination greater than filling volume of destination tube or well</td>
<td>The <code>Volume</code> and <code>Destination</code> parameters in a mix procedure for destination vessels do not match (<code>Volume</code> is higher than the maximum filling volume of the destination vessel) (mix procedure as part of a liquid transfer command via parameter Options).</td>
<td>- Edit <code>Volume</code> and <code>Destination</code> so that <code>Volume</code> is within the maximum filling volume of the destination vessel.</td>
</tr>
</tbody>
</table>
| 0x212C | Parameter conflict: mix after dispense not allowed in multidispense mode | When the `transfer type` parameter is set to `multidispense`, the `mix after dispense` parameter cannot be edited for this command. | - Change parameter `transfer type` to `pipette`; or:
- Omit the mixing step; in this case you could also edit another mixing step as a new command (Mix), which would be performed after the previous command of the procedure has ended. |
| 0x212D | Parameter conflict: 8-channel tool cannot be used for this source rack | Edit mode / parameter in liquid handling command:
Source rack does not fit the 8-channel tool (e.g., 24-well plate or tube rack with 24 positions). | - Choose another rack or another tool. |
<table>
<thead>
<tr>
<th>Code</th>
<th>Symptom/message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x212E</td>
<td>Parameter conflict: 8-channel tool cannot be used for this destination rack</td>
<td>Edit mode/parameter in liquid handling command: Destination rack does not fit the 8-channel tool (e.g., 24-well plate or tube rack with 24 positions).</td>
<td>Choose another rack or another tool.</td>
</tr>
<tr>
<td>0x212F</td>
<td>Sample number too large</td>
<td>The number of samples you have entered will fill more than one rack (source or destination, respectively) based on the programmed pattern.</td>
<td>Program a pattern that together with the number of samples you want to run will not extend beyond one rack, or choose a lower number of samples in the corresponding Number of Samples command.</td>
</tr>
<tr>
<td>0x2130</td>
<td>Parameter conflict: tip cannot be used for this source rack</td>
<td>The Source rack parameter in the liquid handling command does not match the selected tool (e.g., 384-well plate and TS_1000 or TM1000_8).</td>
<td>Choose another rack or another tool.</td>
</tr>
<tr>
<td>0x2131</td>
<td>Parameter conflict: tip cannot be used for this destination rack</td>
<td>The Destination rack parameter in the liquid handling command does not match the selected tool (e.g., 384-well plate and TS_1000 or TM1000_8).</td>
<td>Choose another rack or another tool.</td>
</tr>
<tr>
<td>0x2132</td>
<td>Invalid number of samples (1 .. 384)</td>
<td>Number of samples you have entered is too high.</td>
<td>Enter a maximum number of samples up to 384.</td>
</tr>
<tr>
<td>0x2133</td>
<td>Rack or plate not defined</td>
<td>Edit mode/parameter in command Transport: Labware to be transported was not edited.</td>
<td>See explanation in "Cause".</td>
</tr>
<tr>
<td>0x2134</td>
<td>Rack not selected in the Labware File Window</td>
<td>The rack you edited in a command Transport (parameter labware) is not selected or removed in the Labware File Window and therefore is not available for programming.</td>
<td>Select the rack in the Labware File Window or edit a different rack in the application.</td>
</tr>
<tr>
<td>0x2135</td>
<td>Location for destination not defined</td>
<td>Edit mode/parameter in command Transport: The destination location for the labware to be transported was not edited.</td>
<td>See explanation in "Cause".</td>
</tr>
<tr>
<td>0x2136</td>
<td>Invalid entry for seconds (1 .. 59)</td>
<td>Edit mode/parameter in command Wait: A value beyond the allowed range has been entered for the seconds parameter.</td>
<td>Enter a value between 0 and 59 seconds.</td>
</tr>
<tr>
<td>0x2137</td>
<td>Invalid entry for minutes (1 .. 99)</td>
<td>Edit mode/parameter in command Wait: A value above the allowable maximum minutes has been entered for the minutes parameter.</td>
<td>Enter a value between 0 and 99 minutes.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0x2138</td>
<td>Method without active commands</td>
<td>application contains only passive commands (like wait, comment, etc.).</td>
<td>Insert at least one active command.</td>
</tr>
<tr>
<td>0x2139</td>
<td>Parameter conflict: mix before aspirating not allowed in multiaspirate mode</td>
<td>Pool/POD: Mix before aspirating not allowed in multiaspirate mode.</td>
<td>Do not mix.</td>
</tr>
<tr>
<td>0x213A</td>
<td>Labware to be exchanged are identical</td>
<td>Parameter in command Exchange: Both values point to the same labware.</td>
<td>Enter a new labware for one of the two positions.</td>
</tr>
<tr>
<td>0x2150</td>
<td>Editing vacuum command not possible because vacuum unit is not part of this instrument</td>
<td>Vacuum unit is not listed in the configuration file.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x2152</td>
<td>Editing vac lid option in vacuum command not possible because no vac lid on the worktable</td>
<td>To use the Vac Lid option in the vacuum command the worktable must be equipped with a vac lid.</td>
<td>Editing the worktable please place a Vac Lid on position “GRIPPER”.</td>
</tr>
<tr>
<td>0x2153</td>
<td>Editing vac lid option vacuum command not possible because no gripper on the worktable</td>
<td>To use the Vac Lid option in the vacuum command the worktable must be equipped with a gripper. Communication between instrument and control panel may be defective.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x2154</td>
<td>Parameter conflict: Check levels time may not be shorter than remove lid time</td>
<td>The check levels option can only be performed when the lid has been taken off the filter plate before by the gripper.</td>
<td>Select a check levels time greater than the remove lid time.</td>
</tr>
<tr>
<td>0x2160</td>
<td>No temperature unit in the selected location</td>
<td>Editing a temperature command you must select a location equipped with a temperature unit.</td>
<td>See explanations in ”Cause”.</td>
</tr>
<tr>
<td>0x2161</td>
<td>Temperature unit 1 is not installed</td>
<td>Temperature unit 1 is not listed in the configuration file.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x2162</td>
<td>Temperature unit 2 is not installed</td>
<td>Temperature unit 2 is not listed in the configuration file.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x2163</td>
<td>Temperature unit 3 is not installed</td>
<td>Temperature unit 3 is not listed in the configuration file.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x2170</td>
<td>Parameter conflict: Parameter elution from filter is only possible when filter plates have been selected as source</td>
<td>To edit the elution from filter option a filter plate must have been edited as source.</td>
<td>See explanations in ”Cause”.</td>
</tr>
<tr>
<td>0x2171</td>
<td>Parameter conflict: Multidispense mode is not allowed when selected elution from filter</td>
<td>See explanation in the error message.</td>
<td>See explanation in the error message.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0x2172</td>
<td>Parameter conflict: Transfer volume must be set to zero when Parameter elution from filter has been selected</td>
<td>Using the elution from filter option, the complete volume contained in the filter plate wells is always aspirated; therefore, editing a volume to be transferred is not possible.</td>
<td>Set the volume to zero because the entry will not have an effect in the application run.</td>
</tr>
<tr>
<td>0x2173</td>
<td>Elution from filter is only possible in a sample transfer</td>
<td>File damaged.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x2190</td>
<td>Transport command not possible because no workstation available</td>
<td>The chosen application may not be run on the selected device. Possible cause for this error message: The application has been written for another device.</td>
<td>Load the concerned application on an other device, or delete Transport commands in the application.</td>
</tr>
<tr>
<td>0x2191</td>
<td>Exchange command not possible because no liquid handling station available</td>
<td>The chosen application may not be run on the selected device. Possible cause for this error message: The application has been written for another device.</td>
<td>Load the concerned application on an other device, or delete Exchange commands in the application.</td>
</tr>
<tr>
<td>0x2201</td>
<td>Hardware error Carrier: final position in x always found</td>
<td>X-axis motor: Home switch always on.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x2207</td>
<td>Hardware error Carrier: steps lost in x</td>
<td>X-axis motor: Steps lost.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x220A</td>
<td>(SMOT_IOCTL_ERR)</td>
<td>X-axis motor: Unknown driver error code.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x220B</td>
<td>(SMOT_BADPARAMS)</td>
<td>X-axis motor: error bad parameters.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x220C</td>
<td>(SMOT_ALREADYONPOS)</td>
<td>X-axis motor: already in position.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x2301</td>
<td>Hardware error Carrier: final position in y always found</td>
<td>Y-axis motor: Home switch always on.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x2307</td>
<td>Hardware error Carrier: steps lost in y</td>
<td>Y-axis motor: Steps lost.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x230D</td>
<td>Hardware error Carrier: steps lost in y</td>
<td>Y-axis motor: Steps lost.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x230E</td>
<td>Hardware error Carrier: final position in y not found</td>
<td>Y-axis motor: Home not found.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x230F</td>
<td>Hardware error Carrier: final position in y not found</td>
<td>Y-axis motor: Home not found.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>0x2401</td>
<td>Hardware error Carrier: final position in z always found</td>
<td>Z-axis motor: Home switch always on.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0x2402</td>
<td>Hardware error</td>
<td>Z-axis motor: Home2 not found.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td></td>
<td>Carrier: final position 2 in z not found</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x2403</td>
<td>Hardware error</td>
<td>Z-axis motor: Home2 switch always on.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td></td>
<td>Carrier: final position 2 in z always found</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x2404</td>
<td>Hardware error</td>
<td>Z-axis motor: Wrong home switch.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td></td>
<td>Carrier: final position in z wrong</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x2407</td>
<td>Hardware error</td>
<td>Z-axis motor: Steps lost.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td></td>
<td>Carrier: steps lost in z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x240D</td>
<td>Hardware error</td>
<td>Z-axis motor: Steps lost.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td></td>
<td>Carrier: steps lost in z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x240E</td>
<td>Hardware error</td>
<td>Z-axis motor: Home not found.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td></td>
<td>Carrier: final position in z not found</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x240F</td>
<td>Hardware error</td>
<td>Z-axis motor: Home not found.</td>
<td>Call local Eppendorf Service.</td>
</tr>
<tr>
<td></td>
<td>Carrier: final position in z not found</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x2F00</td>
<td>Communication error during transmission to Trinamic module</td>
<td>Hardware error</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The communication with the Trinamic module is failing.</td>
<td></td>
</tr>
<tr>
<td>0x2F01</td>
<td>Communication error during reception from Trinamic module</td>
<td>Hardware error</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The communication with the Trinamic module is failing.</td>
<td></td>
</tr>
<tr>
<td>0x2F02</td>
<td>Checksum error during reception from Trinamic module</td>
<td>Hardware error</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The checksum from the Trinamic module is failing.</td>
<td></td>
</tr>
<tr>
<td>0x2F03</td>
<td>Communication error during reception from Trinamic module</td>
<td>Hardware error</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The communication with the Trinamic module is failing.</td>
<td></td>
</tr>
<tr>
<td>0x2F06</td>
<td>Mixer motor cannot find its home position</td>
<td>Hardware error</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td></td>
<td>Mixer motor cannot find its home position</td>
<td>Mixer motor cannot find its home position</td>
<td></td>
</tr>
<tr>
<td>0x2F08</td>
<td>Clamping device cannot write to spi bus</td>
<td>Hardware error</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td></td>
<td>Clamping device cannot write to spi bus</td>
<td>Communication with clamping device is failing.</td>
<td></td>
</tr>
<tr>
<td>0x2F0A</td>
<td>Clamping device did not reach operating current</td>
<td>Hardware error</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td></td>
<td>Clamping device did not reach operating current</td>
<td>The gear belt of the clamping device may be failing.</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Symptom/message</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0x2F0C</td>
<td>Clamping device limit switch has wrong position</td>
<td>Hardware error</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td>0x3000</td>
<td>Temperature unit 1 in location C1 reports an invalid temperature</td>
<td>The temperature unit "TEMP1" in position C1 is damaged and showed an invalid temperature.</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td>0x3001</td>
<td>Temperature unit 2 in location C2 reports an invalid temperature</td>
<td>The temperature unit "TEMP2" in position C2 is damaged and showed an invalid temperature.</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td>0x3002</td>
<td>Temperature unit 3 in location C3 reports an invalid temperature</td>
<td>The temperature unit "TEMP3" in position C3 is damaged and showed an invalid temperature.</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td>0x3003</td>
<td>The thermomixer reports an invalid temperature</td>
<td>The temperature unit of the thermomixer is damaged and showed an invalid temperature.</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td>0x3004</td>
<td>Temperature unit 1 in location C1 cannot heat</td>
<td>The temperature unit "TEMP1" in position C1 is damaged and do not heat.</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td>0x3005</td>
<td>Temperature unit 2 in location C2 cannot heat</td>
<td>The temperature unit "TEMP2" in position C2 is damaged and do not heat.</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td>0x3006</td>
<td>Temperature unit 3 in location C3 cannot heat</td>
<td>The temperature unit "TEMP3" in position C3 is damaged and do not heat.</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td>0x3007</td>
<td>The thermomixer cannot heat</td>
<td>The temperature unit of the thermomixer is damaged and do not heat.</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td>0x3008</td>
<td>Temperature unit 1 in location C1 cannot cool</td>
<td>The temperature unit "TEMP1" in position C1 is damaged and does not cool.</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td>0x3009</td>
<td>Temperature unit 2 in location C2 cannot cool</td>
<td>The temperature unit "TEMP2" in position C2 is damaged and does not cool.</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td>0x300A</td>
<td>Temperature unit 3 in location C3 cannot cool</td>
<td>The temperature unit "TEMP3" in position C3 is damaged and does not cool.</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
<tr>
<td>0x300B</td>
<td>The thermomixer cannot cool</td>
<td>The temperature unit of the thermomixer is damaged and does not cool.</td>
<td>Shut down and switch off the instrument; if error re-occurs after switching on: Call Eppendorf Service</td>
</tr>
</tbody>
</table>
8 Maintenance

8.1 Service

8.1.1 Replacing the sealing rings of the eight-channel dispensing tool

Carry out the following steps to replace the sealing rings:

1. Attach the edge of the auxiliary tool at the level of the sealing ring.
2. Cut the sealing ring at the dispensing tool with the help of the auxiliary tool.
3. Remove the sealing ring by hand.
4. Clean the tip cones with a lightly moist and lint-free cloth.
5. Repeat the process for all other sealing rings and tip cones.
6. Attach the new sealing rings with the help of the mounting tool (shortened pipette tip) and position the sealing rings in the recessed grooves of the tip cones.

NOTICE!

Damage to the gold contacts from handling.
The connection to the PCB of the dispensing tool is interfered with or interrupted if the gold contacts on the dispensing tool are damaged or dirtied.

- Do not touch the gold contacts.

Replace the sealing rings annually or as required.
Use the auxiliary tool and the mounting aid included with the delivery of the dispensing tool.

8.1.2 Replacing the seals of the vacuum unit

- Replace the seals if there is visible damage or every half a year (or after 300 method executions).

8.1.3 Replace the sealing mat of the Vac Lid

1. Button the new silicone sealing mat onto the bolts on the underside of the Vac Lid.
2. Ensure that the bolt heads do not get stuck in the mat.
8.1.4 Maintaining the dispensing tools

A lack of servicing will impair reliable dispensing.
Servicing of the dispensing tools is essential after 200,000 full strokes. This is the only way to ensure reliable dispensing.
- Note the warning in the software reporting that 200,000 full strokes have been reached and have the dispensing tools serviced.
- Send the dispensing tool for maintenance to your service partner of Eppendorf AG.

8.1.5 Maintaining the gripper
- You can have the pins in the gripper jawas replaced by your service partner of Eppendorf AG.

8.2 Cleaning

8.2.1 Cleaning the worktable

Damage from UV radiation.
- UV radiation can cause color changes to the surface or, in the course of time, cause damage to the moving parts and electronics of the epMotion.
- Avoid UV radiation.

- If the worktable becomes contaminated during operation, remove such contamination as quickly as possible.

1. Clean the worktable with a 70% ethanol solution or with hypochlorite-containing agents (3%) and a lint-free cloth.
2. Clean the worktable in the area of the spring plate using a cotton bud if necessary.

8.2.2 Cleaning the work surface adapter

1. Clean the work surface adapter with alcohol-containing disinfectants and a lint-free cloth. Do not use any cleaning agents which contain sodium hypochlorite.
2. Wipe off the disinfectants after they have had time to take effect.

8.2.3 Cleaning the dispensing tools

1. Remove the ejector of the single-channel tools.
2. Clean the tip cones and surfaces with water or a 70% ethanol solution or with hypochlorite-containing (3%) agents and a lint-free cloth.
3. Wipe off the disinfectants after they have had time to take effect.
8.2.4 Cleaning the gripper

Risk of injury from sharp pins.
Cuts or other injuries to the skin from sharp pins on the insides of the gripper jaws.

- Always grasp the gripper at the top and not inside at the gripper jaws.

1. Clean the gripper with water, alcohol or alcohol-containing disinfectants or with Na hypochlorite-containing (3 to 4%) agents and a lint-free cloth.
2. Wipe off the disinfectants after they have had time to take effect.

8.2.5 Cleaning the vacuum unit

1. In the event of contamination, clean the vacuum unit immediately with alcohol-containing disinfectants or with Na hypochlorite-containing (3 to 4%) agents and a lint-free cloth.
2. Wipe off the disinfectants after they have had time to take effect.

8.2.6 Cleaning the thermomixer

1. In the event of contamination, clean the vacuum unit immediately with alcohol-containing disinfectants or with Na hypochlorite-containing (3 to 4%) agents and a lint-free cloth.
2. Wipe off the disinfectants after they have had time to take effect.

8.2.7 Cleaning the barcode reader

Damage to device from ingress of liquid or abrasive materials and wipes.

- Do not immerse the barcode reader in water.
- Do not wipe the window with abrasive materials and wipes.
- Never use solvents (for example acetone, benzene, ether, or phenol-based agents).

- If contaminated, clean the barcode reader with a moist cloth and mild cleaning agents (e.g., washing-up liquid) or plastic cleaner fluid.

8.2.8 Cleaning the thermoadapter, thermoblock and thermorack

1. Wipe down thermoadapter, thermoblock and thermorack with alcohol-containing disinfectant or with Na hypochlorite (3 to 4%) and a lint-free cloth.
2. Wipe off the disinfectants after they have had time to take effect.

8.2.9 Cleaning the Vac Lid / Vac Thermo Lid

1. Clean Vac Lid mats and Vac Lid with alcohol-containing disinfectants or with Na hypochlorite solution (5%) and a lint-free cloth.
2. Leave the disinfectants to act in accordance with the time specified in the instructions.
3. Wipe off the disinfectants.

8.2.10 Autoclave hardware and labware

Gripper and dispenser tool

Damage from excessive temperatures or contact with the wall of the autoclave.

- Ensure that the temperature in the autoclaving range exceeds 121 ºC by no more than 5 ºC.
- Ensure that the dispensing tool/gripper is not in contact with the wall of the autoclave.

- Autoclave the dispensing tools and gripper in their entirety even though they include an electronic component.

- Autoclave the gripper/dispensing tools for 20 minutes at 121 ºC and 1 bar pressure.
Autoclaving the vacuum unit

- Autoclave all transportable parts of the vacuum unit for 20 minutes at 121 °C and 1 bar pressure.

Autoclaving Labware

You can autoclave the following labware.
- Thermoadapter, thermoblock and thermorack
- Vac Lid mats, Vac Lid and Vac Thermo Lid
- Elastic rubber mats and CycleLock frame
- Tip holder for epT.I.P.S. Motion Reloads.
- Autoclave the labware for 20 minutes at 121 °C and 1 bar pressure.

The CycleLock mats and frame can also each be irradiated with UV and decontaminated 20 times.
1. Irradiate the mats and the frame at 254 nm UV.
2. Decontaminate in Na hypochlorite solution (10%) for 10 minutes.

8.3 Decontamination before shipment

If you want to send the dispensing tool or gripper to be checked, repaired or calibrated by Eppendorf AG or one of its service partners, please observe the following:

- Follow the instructions in the decontamination certificate. These can be found as a PDF file on our homepage www.eppendorf.de.
- Decontaminate all the parts you want to dispatch.
- Include the completed and signed decontamination certificate for returned goods with your shipment (incl. the serial number of the dispensing tool).

WARNING!

Health hazard from contaminated dispensing tools and gripper.

- Perform decontamination before returning or storing the dispensing tools and the gripper. The dispensing tools and the gripper must be clean and free of hazardous substances.

Hazardous substances are:
- solutions presenting a hazard to health
- potentially infectious agents
- organic solvents and reagents
- radioactive substances
- proteins presenting a hazard to health
- DNA

Follow the instructions in the decontamination certificate. These can be found as a PDF file on our homepage www.eppendorf.de.
The following technical data apply exclusively to the automatic pipetting system epMotion. For technical data on the PC and the keyboard please refer to the appropriate operating instructions.

9.1 Power supply

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>100 to 240 V ±10%</td>
</tr>
<tr>
<td>Fuses</td>
<td>T 10 AL / 250 V</td>
</tr>
<tr>
<td>Current consumption</td>
<td>< 10 A</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 Hz to 60 Hz ±5%</td>
</tr>
<tr>
<td>Power consumption (excluding thermal module)</td>
<td>80 W</td>
</tr>
<tr>
<td></td>
<td>140 W</td>
</tr>
<tr>
<td></td>
<td>185 W</td>
</tr>
<tr>
<td>Power consumption for thermal module</td>
<td>60 W</td>
</tr>
<tr>
<td>Overvoltage category</td>
<td>II (IEC 610 10-1)</td>
</tr>
<tr>
<td>Degree of contamination</td>
<td>2</td>
</tr>
<tr>
<td>Protection class</td>
<td>1</td>
</tr>
</tbody>
</table>

9.2 Ambient conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>General operation</td>
<td>+15°C to +35°C</td>
</tr>
<tr>
<td></td>
<td>55% to 75% rel. humidity</td>
</tr>
<tr>
<td></td>
<td>up to 2000 m NN</td>
</tr>
<tr>
<td>Storage conditions</td>
<td>-20°C to +70°C</td>
</tr>
<tr>
<td></td>
<td>10% to 80% rel. humidity</td>
</tr>
</tbody>
</table>

9.3 Weight/dimensions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>107 cm</td>
</tr>
<tr>
<td>Depth</td>
<td>61 cm</td>
</tr>
<tr>
<td>Height</td>
<td>67 cm</td>
</tr>
</tbody>
</table>

9.4 Interfaces

<table>
<thead>
<tr>
<th>Interface</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB</td>
<td>USB 2.0</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Ethernet 100 MBit/s</td>
</tr>
</tbody>
</table>
Dispensing Tools

Data for free-jet pipetting using double-distilled water. Data analysis in accordance with ISO 8655.

Temperature approx. 20 °C, standard air pressure.

<table>
<thead>
<tr>
<th>Dispensing tool</th>
<th>Volume range</th>
<th>Volume</th>
<th>Error systematic (falsity)</th>
<th>Random (imprecision)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>μL</td>
<td>%</td>
<td>μL</td>
</tr>
<tr>
<td>TS 50</td>
<td>1.0 μL to 50 μL</td>
<td>1 μL</td>
<td>±15</td>
<td>±0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 μL</td>
<td>±5.0</td>
<td>±0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 μL</td>
<td>±1.5</td>
<td>±0.375</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 μL</td>
<td>±1.2</td>
<td>±0.6</td>
</tr>
<tr>
<td>TS 300</td>
<td>20 μL to 300 μL</td>
<td>20 μL</td>
<td>±4.0</td>
<td>±0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 μL</td>
<td>±3.0</td>
<td>±0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 μL</td>
<td>±1.0</td>
<td>±1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300 μL</td>
<td>±0.6</td>
<td>±1.8</td>
</tr>
<tr>
<td>TS 1000</td>
<td>40 μL to 1,000 μL</td>
<td>40 μL</td>
<td>±5.0</td>
<td>±2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 μL</td>
<td>±2.0</td>
<td>±2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 μL</td>
<td>±1.0</td>
<td>±5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,000 μL</td>
<td>±0.7</td>
<td>±7.0</td>
</tr>
<tr>
<td>TM 50-8</td>
<td>1.0 μL to 50 μL</td>
<td>1 μL</td>
<td>±25</td>
<td>±0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 μL</td>
<td>±5.0</td>
<td>±0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 μL</td>
<td>±2.0</td>
<td>±0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 μL</td>
<td>±1.2</td>
<td>±0.6</td>
</tr>
<tr>
<td>TM 300-8</td>
<td>20 μL to 300 μL</td>
<td>20 μL</td>
<td>±10</td>
<td>±2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 μL</td>
<td>±10</td>
<td>±3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 μL</td>
<td>±2.5</td>
<td>±3.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300 μL</td>
<td>±1.5</td>
<td>±4.5</td>
</tr>
<tr>
<td>TM 1000-8</td>
<td>40 μL to 1,000 μL</td>
<td>40 μL</td>
<td>±6.0</td>
<td>±2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 μL</td>
<td>±3.0</td>
<td>±3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 μL</td>
<td>±1.5</td>
<td>±7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,000 μL</td>
<td>±0.8</td>
<td>±8.0</td>
</tr>
</tbody>
</table>

When dispensing the defined errors for pipetting are exceeded.
9.6 Additional specifications

9.6.1 Barcode reader

<table>
<thead>
<tr>
<th>Type</th>
<th>Manual barcode reader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection</td>
<td>USB</td>
</tr>
<tr>
<td>Weight</td>
<td>185 g</td>
</tr>
<tr>
<td>Barcodes supported</td>
<td>linear: Codabar, Code 39, Interleaved 2 of 5, Code 93, Code 128, UPC/EAN, EAN addendum 2D: Data Matrix</td>
</tr>
</tbody>
</table>

9.6.2 Noise level

| Noise level | typically 56 dB (A) |

9.6.3 Optical sensor

<table>
<thead>
<tr>
<th>Optical confocal infrared sensor</th>
<th>Contact-free recognition of liquid levels, inserted tools, labware surfaces, and type and quantity of pipette tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection conditions</td>
<td>The liquid surface must be at 90 ± 3° in relation to the optical beam axis. The liquid height must be at least 3 mm</td>
</tr>
</tbody>
</table>

9.6.4 Carrier

X-Y-Z axis positioning	
Systematic deviation	±0.3 mm
Random deviation	±0.1 mm

9.6.5 Gripper

| Form-fit carrying capacity | ≤1200 g |
| Force-fit carrying capacity | ≤2000 g |

9.6.6 Vacuum unit

Max. pumping quantity	35 NL/min
Vacuum range	0.1 to 85 kPa
Time which can be selected	1 s to 35 min 59 s

9.6.7 Thermomixer

Power consumption	105 W
Speed	300 min⁻¹ to 2 000 min⁻¹
Mixing time	5 s to 120 min
Load	max. 1 000 g
Temperature control	4°C to 95°C max. temperature difference: 15 °C below ambient temperature
9.6.8 Thermal module

<table>
<thead>
<tr>
<th>Setting range</th>
<th>0 to 110°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic measuring deviation at:</td>
<td></td>
</tr>
<tr>
<td>• 4°C</td>
<td>±2°C</td>
</tr>
<tr>
<td>• 37°C</td>
<td>±1°C</td>
</tr>
<tr>
<td>• 95°C</td>
<td>±2°C</td>
</tr>
<tr>
<td>Random error</td>
<td>±1°C</td>
</tr>
<tr>
<td>Power consumption</td>
<td>60 W</td>
</tr>
</tbody>
</table>

9.6.9 Vac Thermo lid

<table>
<thead>
<tr>
<th>Max. block temperature</th>
<th>110 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. housing temperature</td>
<td>55°C</td>
</tr>
<tr>
<td>Weight</td>
<td>1.3 kg</td>
</tr>
<tr>
<td>Height</td>
<td>60 mm</td>
</tr>
<tr>
<td>Length/width</td>
<td>MTP format</td>
</tr>
</tbody>
</table>
10.1 Accessories

Use only original Eppendorf accessories or accessories (labware) approved by Eppendorf AG on the epMotion.

10.1.1 Automated pipetting system epMotion 5075

<table>
<thead>
<tr>
<th>Order no. (international)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5075 000.750</td>
<td>Automated pipetting system epMotion 5075 LH with integrated PC 5075 000.008 plus integrated industrial PC, keyboard and mouse</td>
</tr>
<tr>
<td>5075 000.768</td>
<td>Automated pipetting system epMotion 5075 VAC with integrated PC as 5075 000.016 plus integrated industrial PC, keyboard and mouse</td>
</tr>
<tr>
<td>5075 000.776</td>
<td>Automated pipetting system epMotion 5075 MC with integrated PC as 5075 000.032 plus integrated industrial PC, keyboard and mouse</td>
</tr>
<tr>
<td>5075 000.784</td>
<td>Automated pipetting system epMotion 5075 TMX with integrated PC as 5075 000.733 plus integrated industrial PC, keyboard and mouse</td>
</tr>
</tbody>
</table>

10.1.2 Dispensing tools

<table>
<thead>
<tr>
<th>Order no. (international)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5280 000.010</td>
<td>Single-channel dispensing tool TS 50 Volume range 1 μL - 50 μl</td>
</tr>
<tr>
<td>5280 000.037</td>
<td>Single-channel dispensing tool TS 300 Volume range 20 μL - 300 μl</td>
</tr>
<tr>
<td>5280 000.053</td>
<td>Single-channel dispensing tool TS 1000 Volume range 40 μL - 1000 μL</td>
</tr>
<tr>
<td>5280 000.215</td>
<td>Eight-channel-dispensing tool TM 50 Volume range 1 μL - 50 μl</td>
</tr>
<tr>
<td>5280 000.231</td>
<td>Eight-channel-dispensing tool TM 300 Volume range 20 μL - 300 μl</td>
</tr>
<tr>
<td>5280 000.258</td>
<td>Eight-channel-dispensing tool TM 1000 Volume range 40 μL - 1000 μL</td>
</tr>
<tr>
<td>5075 774.003</td>
<td>Holder for 6 dispensing tools</td>
</tr>
</tbody>
</table>

10.1.3 Gripper

<table>
<thead>
<tr>
<th>Order no. (international)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5282 000.018</td>
<td>Gripper</td>
</tr>
<tr>
<td>5075 759.004</td>
<td>Gripper holder</td>
</tr>
</tbody>
</table>

10.1.4 Thermal module

<table>
<thead>
<tr>
<th>Order no. (international)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5075 757.001</td>
<td>Thermal module for heating or cooling the thermaadapter, thermoblock, or thermorack</td>
</tr>
</tbody>
</table>
10.1.5 Accessories for nucleic acid purification

<table>
<thead>
<tr>
<th>Order no. (international)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5075 778.009</td>
<td>Vac frame holder</td>
</tr>
<tr>
<td>5075 779.005</td>
<td>VAC lid</td>
</tr>
<tr>
<td>5075 784.009</td>
<td>VAC frame 1</td>
</tr>
<tr>
<td>5075 785.005</td>
<td>VAC frame 2</td>
</tr>
<tr>
<td>5075 793.008</td>
<td>Mat for vacuum lid</td>
</tr>
<tr>
<td>5075 785.030</td>
<td>Collection plate adapter</td>
</tr>
<tr>
<td></td>
<td>for handling collection microtubes in microtube racks</td>
</tr>
<tr>
<td>5075 794.004</td>
<td>Channeling Plate</td>
</tr>
<tr>
<td></td>
<td>for vacuum processing foaming solutions through multiwell plates, set of 10</td>
</tr>
<tr>
<td>5075 796.007</td>
<td>Vac Thermo Lid</td>
</tr>
</tbody>
</table>

10.1.6 epT.I.P.S. Motion pipette tips.

<table>
<thead>
<tr>
<th>Order no. (international)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0030 014.405 0030 015.207</td>
<td>epT.I.P.S. Motion 50 μL 10 racks with 96 tips each</td>
</tr>
<tr>
<td></td>
<td>Eppendorf Quality</td>
</tr>
<tr>
<td></td>
<td>Sterile</td>
</tr>
<tr>
<td>0030 014.448 0030 015.223</td>
<td>epT.I.P.S. Motion 300 μL 10 racks with 96 tips each</td>
</tr>
<tr>
<td></td>
<td>Eppendorf Quality</td>
</tr>
<tr>
<td></td>
<td>Sterile</td>
</tr>
<tr>
<td>0030 014.480 0030 015.240</td>
<td>epT.I.P.S. Motion 1 000 μL 10 racks with 96 tips each</td>
</tr>
<tr>
<td></td>
<td>Eppendorf Quality</td>
</tr>
<tr>
<td></td>
<td>Sterile</td>
</tr>
<tr>
<td>0030 014.413 0030 015.215</td>
<td>epT.I.P.S. Motion Filter 50 μL 10 racks with 96 tips each</td>
</tr>
<tr>
<td></td>
<td>PCR clean</td>
</tr>
<tr>
<td></td>
<td>PCR clean and Sterile</td>
</tr>
<tr>
<td>0030 014.456 0030 015.231</td>
<td>epT.I.P.S. Motion Filter 300 μL 10 racks with 96 tips each</td>
</tr>
<tr>
<td></td>
<td>PCR clean</td>
</tr>
<tr>
<td></td>
<td>PCR clean and Sterile</td>
</tr>
<tr>
<td>0030 014.499 0030 015.258</td>
<td>epT.I.P.S. Motion Filter 1 000 μL 10 racks with 96 tips each</td>
</tr>
<tr>
<td></td>
<td>PCR clean</td>
</tr>
<tr>
<td></td>
<td>PCR clean and Sterile</td>
</tr>
<tr>
<td>0030 014.421</td>
<td>epT.I.P.S. Motion Reloads 50 μL 12 × 2 trays with 96 tips each</td>
</tr>
<tr>
<td></td>
<td>Eppendorf Quality</td>
</tr>
<tr>
<td>0030 014.464</td>
<td>epT.I.P.S. Motion Reloads 300 μL 12 × 2 trays with 96 tips each</td>
</tr>
<tr>
<td></td>
<td>Eppendorf Quality</td>
</tr>
<tr>
<td>0030 014.502</td>
<td>epT.I.P.S. Motion Reloads 1 000 μL 12 × 2 trays with 96 tips each</td>
</tr>
<tr>
<td></td>
<td>Eppendorf Quality</td>
</tr>
</tbody>
</table>
10.1.7 Reservoirs

<table>
<thead>
<tr>
<th>Order no. (international)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0030 014.430</td>
<td>epT.I.P.S. Motion Filter Reloads 50 µL
12 × 2 trays with 96 tips each
PCR clean</td>
</tr>
<tr>
<td>0030 014.472</td>
<td>epT.I.P.S. Motion Filter Reloads 300 µL
12 × 2 trays with 96 tips each
PCR clean</td>
</tr>
<tr>
<td>0030 014.510</td>
<td>epT.I.P.S. Motion Filter Reloads 1 000 µL
12 × 2 trays with 96 tips each
PCR clean</td>
</tr>
<tr>
<td>5075 751.399</td>
<td>TipHolder for epT.I.P.S. Motion Reloads</td>
</tr>
</tbody>
</table>

10.1.8 Racks for individual tubes

<table>
<thead>
<tr>
<th>Order no. (international)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5075 754.002</td>
<td>ReservoirRack
for 30 mL and 100 mL reservoirs and ReservoirRack Module TC</td>
</tr>
<tr>
<td>0030 126.505</td>
<td>epMotion Reservoir
PCR clean, 10 × 5 pieces in bags
30 mL
100 mL</td>
</tr>
<tr>
<td>0030 126.513</td>
<td>Reservoir 400 mL
10 pieces</td>
</tr>
<tr>
<td>5075 761.009</td>
<td>Racks for individual tubes
for use with Eppendorf vessels and glass or plastic test tubes, cannot be tempered
Ø 17 mm × 100 mm max. length
Ø 17 mm × 60 mm max. length
Ø 16 mm × 100 mm max. length
Ø 16 mm × 60 mm max. length
Ø 15 mm × 100 mm max. length
Ø 15 mm × 60 mm max. length
Ø 14 mm × 100 mm max. length
Ø 14 mm × 60 mm max. length
Ø 13 mm × 100 mm max. length
Ø 13 mm × 60 mm max. length
Ø 12 mm × 100 mm max. length
Ø 12 mm × 60 mm max. length</td>
</tr>
<tr>
<td>5075 792.001</td>
<td>Rack
for 24 HPLC vessels
Ø 12 mm × 40 mm max. length</td>
</tr>
<tr>
<td>5075 792.005</td>
<td>Rack
for 96 × 1.5/2.0 mL conical tubes</td>
</tr>
<tr>
<td>5075 751.160</td>
<td>Thermorack TMX
for 24 Safe-Lock tubes
0.5 mL
1.5/2.0 mL</td>
</tr>
</tbody>
</table>
10.1.9 ReservoirRack modules

<table>
<thead>
<tr>
<th>Order no. (international)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5075 751.453</td>
<td>ReservoirRack Module TC, for 24 Safe-Lock tubes 0.5/1,5/2.0 mL, cannot be tempered, with adapter sleeves für 0.5 mL 1.5/2.0 mL, cannot be tempered</td>
</tr>
<tr>
<td>5075 751.275</td>
<td>Rack, for 24 Safe-Lock tubes 0.5/1,5/2.0 mL, cannot be tempered, with adapter sleeves für 0.5 mL 1.5/2.0 mL, cannot be tempered</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR 0.2 mL</td>
</tr>
<tr>
<td>PCR 0.5 mL</td>
</tr>
<tr>
<td>Safe-Lock</td>
</tr>
<tr>
<td>Ø 12 mm</td>
</tr>
<tr>
<td>Ø 16 mm</td>
</tr>
<tr>
<td>Ø 17 mm</td>
</tr>
<tr>
<td>Ø 29 mm</td>
</tr>
<tr>
<td>Reservoir 30 mL</td>
</tr>
<tr>
<td>Reservoir 100 mL</td>
</tr>
</tbody>
</table>

10.1.10 Height adapter

<table>
<thead>
<tr>
<th>Order no. (international)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5075 751.003</td>
<td>Height adapter 85 mm</td>
</tr>
<tr>
<td>5075 752.000</td>
<td>55 mm</td>
</tr>
<tr>
<td>5075 755.009</td>
<td>40 mm</td>
</tr>
</tbody>
</table>

10.1.11 Additional Accessories

<table>
<thead>
<tr>
<th>Order no. (international)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5075 001.250</td>
<td>Monitor, 19" TFT monitor to be used with epMotion versions with integrated PC</td>
</tr>
<tr>
<td>5075 016.001</td>
<td>epBlue-epMotion PC Software, Software for epMotion Version with integrated PC, preinstalled</td>
</tr>
<tr>
<td>5075 002.000</td>
<td>epBlue ID upgrade kit for epMotion with integrated PC, With epBlue ID installation CD-ROM, recovery DVD, barcode reader, USB hardware Key (eLicenser) and hardware key code card for upgrading an epBlue or epBlue GxP system</td>
</tr>
<tr>
<td>5075 753.006</td>
<td>Waste box</td>
</tr>
<tr>
<td>5070 752.001</td>
<td>Work surface adapter, to raise the epMotion worktable 4 feet</td>
</tr>
<tr>
<td>5075 751.054</td>
<td>Thermoadapter, for Deep Well Plates, 96 wells</td>
</tr>
<tr>
<td>5075 769.000, 771.004</td>
<td>Thermorack, For 24 Safe-Lock tubes 0.5 mL 1.5/2.0 mL</td>
</tr>
<tr>
<td>5075 772.000</td>
<td>Adapter sleeves, for thermorack 1.5/2.0 mL for 0.5 mL Safe-Lock tubes</td>
</tr>
</tbody>
</table>
10.1.12 Expansion/upgrade kits

All the expansions and upgrades listed here must only be carried out by service personnel who have been specifically authorized by Eppendorf.

<table>
<thead>
<tr>
<th>Order no. (international)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5075 000.610</td>
<td>Conversion kit LH to VAC for retrofitting an LH version into a VAC version</td>
</tr>
<tr>
<td>5075 000.628</td>
<td>Conversion kit LH to TMX for retrofitting an LH version into a TMX version</td>
</tr>
<tr>
<td>5075 851.440</td>
<td>Software and Hardware modification kit 1 Modification kit for epMotion 5075 with serial numbers < 1,000</td>
</tr>
<tr>
<td>5075 851.520</td>
<td>Upgrade kit for retrofitting a Control Panel version into an PC version</td>
</tr>
<tr>
<td>5075 000.830</td>
<td>Software and Hardware modification kit epBlue ID For epMotion PC to support barcode based documentation Incl. barcode reader with barcode reader stand</td>
</tr>
</tbody>
</table>

10.1.13 Accessories for real-time PCR

<table>
<thead>
<tr>
<th>Order no. (international)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5075 790.009</td>
<td>Rack Smart</td>
</tr>
<tr>
<td>5075 795.000</td>
<td>Rack LC 20 µL/100 µL</td>
</tr>
<tr>
<td>5075 751.305</td>
<td>Thermoadapter LC Sample for MagNA Pure LC sample cartridge</td>
</tr>
<tr>
<td>5075 767.031</td>
<td>Thermoadapter CB 100 µL</td>
</tr>
<tr>
<td>5075 787.008 5075 788.004</td>
<td>Thermoadapter for PCR plates, 96 wells, skirted for PCR 384 wells, skirted</td>
</tr>
<tr>
<td>5075 789.000</td>
<td>Thermoadapter Frosty</td>
</tr>
<tr>
<td>5075 766.000</td>
<td>Thermoblock PCR 96 for use with vessels 0.2 mL or 77 PCR tubes 0.5 mL</td>
</tr>
<tr>
<td>5075 767.007</td>
<td>Thermoblock PCR 384</td>
</tr>
<tr>
<td>0030 128.648</td>
<td>twin.tec PCR Plate 96, skirted Wells colorless, 25 pieces low profile, border clear border yellow border green border blue border red</td>
</tr>
<tr>
<td>0030 128.656</td>
<td>twin.tec PCR Plate 96, skirted Wells black, 25 pieces</td>
</tr>
<tr>
<td>0030 128.664</td>
<td>twin.tec PCR Plate 96, skirted Wells black, 25 pieces</td>
</tr>
<tr>
<td>0030 128.672</td>
<td>twin.tec PCR Plate 96, skirted Wells black, 25 pieces</td>
</tr>
<tr>
<td>0030 128.680</td>
<td>twin.tec PCR Plate 96, skirted Wells black, 25 pieces</td>
</tr>
<tr>
<td>0030 128.800</td>
<td>twin.tec PCR Plate 96, skirted Wells black, 25 pieces</td>
</tr>
<tr>
<td>Order no. (international)</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>0030 128.508</td>
<td>twin.tec PCR Plate 384</td>
</tr>
<tr>
<td>0030 128.516</td>
<td>Wells colorless, 25 pieces</td>
</tr>
<tr>
<td>0030 128.524</td>
<td>border clear</td>
</tr>
<tr>
<td>0030 128.532</td>
<td>border yellow</td>
</tr>
<tr>
<td>0030 128.540</td>
<td>border green</td>
</tr>
<tr>
<td></td>
<td>border blue</td>
</tr>
<tr>
<td></td>
<td>border red</td>
</tr>
<tr>
<td>3881 000.015</td>
<td>PCR-Cooler</td>
</tr>
<tr>
<td>3881 000.023</td>
<td>Starter Set (1 x pink, 1 x blue)</td>
</tr>
<tr>
<td>3881 000.031</td>
<td>pink</td>
</tr>
<tr>
<td></td>
<td>blue</td>
</tr>
</tbody>
</table>

All twin.tec plates can be obtained with bar coding on request.
11 Transport, storage and disposal

11.1 Shut down

If you decommission the epMotion for a prolonged period of time, observe the storage conditions (see Ambient conditions on p. 177).

Carry out the following tasks before decommissioning the epMotion:

1. Clean the epMotion and decontaminate the components (see Cleaning on p. 174).
2. Only have the transport of the epMotion carried out by the service department of Eppendorf AG or authorized service personnel.

11.2 Installation after transport

Fig. 8: System connections between epMotion PC and epMotion

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Control panel</td>
<td>CAN</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>RS 232</td>
<td>USB</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Ethernet</td>
<td>PC power switch</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>USB</td>
<td>DVI monitor connection</td>
</tr>
</tbody>
</table>

For additional epMotion systems

Connection between epMotion PC and epMotion

Connection for mouse and keyboard

DVI connection for PC display
11.3 Disposal

In case the product is to be disposed of, the relevant legal regulations are to be observed.

Information on the disposal of electrical and electronic devices in the European Community:

Within the European Community, the disposal of electrical devices is regulated by national regulations based on EU Directive 2002/96/EC pertaining to waste electrical and electronic equipment (WEEE).

According to these regulations, any devices supplied after August 13, 2005, in the business-to-business sphere, to which this product is assigned, may no longer be disposed of in municipal or domestic waste. To document this, they have been marked with the following identification:

![Disposal symbol]

Because disposal regulations may differ from one country to another within the EU, please contact your supplier if necessary.

In Germany, this is mandatory from March 23, 2006. From this date, the manufacturer has to offer a suitable method of return for all devices supplied after August 13, 2005. For all devices supplied before August 13, 2005, the last user is responsible for the correct disposal.
12 Appendix A: Hardware

12.1 Labware

12.1.1 Introduction

Among other features, the software contains a large number of predefined consumables (tubes, pipette tips, plates etc.), racks, holders and tools etc. You will find all labware names arranged in specific subdirectories by labware type. These are explained in the following sections.

This is not a comprehensive description, as the range of labware is constantly being expanded. More information on available labware components can be found in the product description of this operating manual as well in the Internet at www.epMotion.com. **All information subject to change.**

Information about the bottom tolerance and the remaining volume can be displayed via *Open labware* (Home - create/edit labware tab) in the *Labware Properties* section.

![Fig. 9: Product properties in "Open labware"](image)

You can display additional product information for selected labware, such as the article name, information about volumes, and order numbers, etc. To do so, click on *Info* in the file window or mark the desired labware in Worktable mode.

![Fig. 10: Product properties in the file window (after you click on Info)](image)

The same information is displayed in the *Labware* list of the *Work* tab (e.g., after opening an application) if a labware has been selected.
12.1.2 Overview of labware

epT.I.P.S. Motion

epT.I.P.S. Motion are single-use tips and are intended exclusively for dispensing tools belonging to the epMotion family of devices. The pipette tips are available in three volume sizes to suit the volume of the dispensing tools (50 μL, 300 μL and 1000 μL), in each case with or without filter. The **Tips** labware folder contains the selection of epT.I.P.S pipette tips. Motion pipette tips.

<table>
<thead>
<tr>
<th>Name in labware folder</th>
<th>Product name</th>
</tr>
</thead>
<tbody>
<tr>
<td>tips1000</td>
<td>epT.I.P.S. Motion 1000 μL</td>
</tr>
<tr>
<td>tips1000f</td>
<td>epT.I.P.S. Motion 1000 μL, filter</td>
</tr>
<tr>
<td>tip300</td>
<td>epT.I.P.S. Motion 300 μL</td>
</tr>
<tr>
<td>tip300f</td>
<td>epT.I.P.S. Motion 300 μL, filter</td>
</tr>
<tr>
<td>tip50</td>
<td>epT.I.P.S. Motion 50 μL</td>
</tr>
<tr>
<td>tip50f</td>
<td>epT.I.P.S. Motion 50 μL, filter</td>
</tr>
</tbody>
</table>

Pipette tips and racks are made of polypropylene (PP). The filter of the pipette tips is made of polyethylene (PE).

Positioning fault as a result of incorrect tip handling.

- Use tips only once.
- Do not autoclave tips. If purity conditions demand it, use filter tips of the PCR clean specification.
- Do not stack tip racks.

The coding on the tray informs the optical sensor about the volume of the tips and about whether or not these are tips with filters. As the coding is only on one side of the tray, the correct positioning of the rack on the worktable is important. Position the racks on the worktable so that the labeling of the rack or tip holder and the recess on the tray are facing toward you.
The optical sensor detects any supply of tips still available within a rack, i.e. tips in racks which have been started can continue to be used for subsequent methods. A prerequisite for this is that the tips in the rack are in contiguous positions.

Faults as a result of tips missing from the rack.
The optical sensor detects only the initial and final position of tips in a rack. Missing tips removed from the center of a column by hand are not detected and will lead to faults in executing the method.

- Do not remove by hand any tips within an enclosed area on the rack.

A column in a tip rack which has been started and which has been created by use of a single-channel dispensing tool is detected by the software if you switch to a multi-channel dispensing tool and is not used. Tips from this started column will not be picked up until a single-channel dispensing tool is being used again later.

If you use an eight-channel dispensing tool, it will accordingly not use columns which have been started. In the case of multi-channel mode, 8 tips are always picked up simultaneously.

If the optical sensor is switched off, the tips must be placed in the rack starting with coordinate A1. Columns must be complete.

Racks, thermoracks, thermoblock and thermoadapter
Racks are tube holders which can hold up to 24 tubes of a type. They are supplied primarily for tubes larger than 2 mL.

Tubes with a capacity of 2 mL and below are positioned in thermoracks.

A special type is the "two-location rack". This rack can hold 96 tubes of approx. 2 mL.

Thermoracks, thermoblocks and thermoadapters can be temperature-controlled on the thermal module.

Restrictions
Rack
The combination of a rack with a tube type occurs in the labware file window in the Equip Racks + Modules with Tubes directory.
No transport by the gripper.

Thermorack
The combination of a rack with a tube type occurs in the Equip Racks + Modules with Tubes directory.
Active cooling or heating on a thermal module.
Thermoracks can be transported with the gripper.

Thermoblock
The combination of a thermoblocks with a skirted, semi-skirted or unskirted PCR plate is specified in the software. No configuration or change possible.
Active cooling or heating on a thermal module.
Joint transport of thermoblock and PCR plate by the gripper.

Thermoadapter
Thermoadapters are available for 96-well and 384-well PCR plates as well as for the Deepwell plates 96. When equipping the worktable, you can place a plate on the thermoadapter in a similar way to putting labware on a height adapter. In contrast to the thermoblock, the thermoadapter and plate do not form a fixed combination. The thermoadapter and the thermoblock differ in visual terms by their different web lengths. The thermoblock also has cutouts with which the gripper of the epMotion 5075 can engage.

Racks and thermoracks can be combined with tubes by users with level 2 rights or administrator rights.

NOTICE!
Faults as a result of tips missing from the rack.
The optical sensor detects only the initial and final position of tips in a rack. Missing tips removed from the center of a column by hand are not detected and will lead to faults in executing the method.

- Do not remove by hand any tips within an enclosed area on the rack.
Racks for reagent tubes

Abb. 15: Rack for 24 reagent tubes

The appropriate racks are available as tube holders for reagent tubes with diameters of 12 to 17 mm. The basic area of the racks corresponds to that of a microplate, i.e. they can be placed at any location on the worktable. The locations on a rack are numbered from 1 to 24. The rack is available in two different heights.

The optical sensor can use the coding of the racks to check that they are correctly aligned. The software issues an error message if the rack is inserted the wrong way round.

Tubes and racks may not exceed a total height of approx. 126 mm. The maximum immersion depth of the 300 μL and 500 μL tips is correspondingly less than that of the longer 1000 μL tips.

The administrator determines which tube can be used with which rack and is consequently available as a combination in the software.

Rack LC for LightCycler capillaries

Abb. 18: Rack 96 (Two Location Rack)

The Rack LC is a tube holder for automatically filling LightCycler capillaries. It can hold 96 capillaries with a capacity of 20 μL or 96 capillaries with a capacity of 100 μL. The bores for both sizes of capillary are arranged in an alternating pattern.

In the software you will find the Rack LC under Plates\Tube Plates.

Using the Rack LC

1. Position the Rack LC on the worktable with its label on the front.
2. Select the labware for filling the capillaries from the Labware Tube Plates list.
3. Supply the Rack LC with only one capillary size per run.

Rack 96 (Two Location Rack)

Abb. 16: Rack LC 20 μL
Abb. 17: Rack LC 100 μL

The rack is for the absorption of cryo tubes without lid (diameter similar to Safe-Lock tubes 1.5 or 2 mL). To be able to take 96 tubes, this special rack occupies 2 locations.
Using Rack 96
1. Select Rack 96 in the labware folder Equip Racks + Modules with Tubes under the name Rack96_1.5–2.0.
2. Proceed as for equipping the 96-well thermorack when equipping this rack with tubes with an attached lid (Safe-Lock type tube). The position numbering of Rack 96 is rotated by 90° compared to a 96-well plate.
3. When equipping the worktable, place Rack 96 on the pins of the two locations. In the process, the opening in the bottom tray of Rack 96 must point towards the front.

Thermoracks and thermoracks TMX
For smaller tubes (e.g., Eppendorf Safe-Lock tube for 1.5 mL or 2 mL) a Thermorack/Thermorack TMX which can be temperature-controlled with lid holder and 24 positions is available. The tube lids are held vertically in the holder to the right of the tube bore.
With the aid of 24 adapter sleeves you can also insert into the Thermorack/Thermorack TMX Safe-Lock tubes with a volume of 0.5 mL. The Thermorack/Thermorack TMX for the use with 0.5 mL tubes is also available with inserted adapter sleeves.

Damage to the device from placing the thermorack on the thermomixer!
The thermorack is not suitable for application in the thermomixer. Using it in the thermomixer may result in damage to the device and dispensing errors.

CAUTION!
Do not place the thermorack onto the thermomixer!
Only use the thermorack TMX on the thermomixer.

Fig. 19: Thermorack
The thermorack has a high heat capacity and retains the temperature away from the temperature-control over a longer time period. It has a slower heat transfer as the Thermorack TMX, i.e. it takes a bit longer to reach the desired temperature. Therefore the thermorack can also be applied for temperature-control on the epMotion without active temperature-control.
The Thermorack TMX is optimized for the application in the thermomixer as it is easier than the normal thermoracks and therefore permits higher rotational speed during mixing. It has a quick heat transfer and thus reaches the desired temperature quickly. The Thermorack TMX has a lower heat capacity as opposed to the normal thermorack and does not retain the temperature constant for a long time outside an active temperature-control. Therefore the Thermorack TMX is above all suitable for the application on a epMotion with thermo unit and/or thermomixer.

Thermoblocks and Thermoracks (96 Wells)

The thermoblock shown is available for 96-well PCR plates (e.g., Eppendorf twin.tec semi-skirted or skirted). The thermoblock and plate then form a fixed combination in the method and can only be transported or exchanged together.

Skirted 96-well PCR plates can optionally be positioned in a location on the worktable with a 96-well thermoblock, a 96-well thermoadapter or solo if the administrator has defined them as a labware combination in the software.

Unskirted or semi-skirted 96-well PCR plates can only be positioned in a location on the worktable in conjunction with the 96-well thermoblock or 96-well thermoadapter.

The combination of Thermoblock and other PCR plates cannot be performed by the administrator, only by Eppendorf. Fixed combinations are predefined in the software for a variety of plates, e.g., for twin.tec plates.

Special case Thermorack and 0.2 mL tubes

If the thermoblock is to be equipped with 0.2 mL PCR tubes then the thermoblock turns into a thermorack in the software. The combination of a 0.2 mL tube with the thermorack does not have to be predefined in the Labware directory at the factory, it can be effected by the administrator in the *Equip Racks + Modules with Tubes* labware folder.

NOTICE!

Risk of collision as a result of projecting tube lids!

Carrier travel is optimized in the z direction. As a result, the tube lids may not point upwards. They could otherwise be contacted by the tips which could lose liquid in the process.

- Position 0.2 mL individual tubes and 8-tube strips so that their tube lids do not obstruct the path of travel or dispensing steps of the dispensing tool.
Use of the thermodrack with 0.2 mL tubes

1. The best arrangement for the tubes is in columns, leaving every other column free for the tube lids. Therefore you can position maximum 48 tubes in the thermodblock (see image).

2. Specify the assignment in the transport pattern when programming the method. Supply at the start must correspond to the pattern.

Thermodblock (384 wells)

A special 384-well thermodblock is available for PCR plates with 384 wells.

Thermodadapter

The thermodadapter cannot be transported by the gripper. But the gripper can remove a skirted PCR plate or a 96-well deepwell plate from the thermodadapter or place them on the empty thermodadapter. Thermodadapters can be positioned in a location with or without a plate at the start of the method. Active cooling or heating of a thermodadapter on a thermal module is possible even before a plate has been put on. The thermodadapter forms a temporary combination with a plate. The combination is the result of editing the worktable or a Transport command.

The combination "Thermodadapter with skirted PCR plate" can also be canceled again in the method by a Transport command. In terms of their combination options, thermodadapters are similar to height adapters. Note: PCR plates should always be placed on a thermal module together with a thermodblock or thermodadapter. A semi-skirted or unskirted PCR plate can only be used on the epMotion in combination with a thermodadapter or thermodblock. A semi-skirted or unskirted PCR plate can only be transported by the gripper in combination with the thermodblock.

When viewed from above, PCR thermodadapters look very similar to thermodblocks. However, they can be distinguished from one another from the side by the differing lengths of their webs.
Thermoadapter LC Sample

The Thermoadapter LC Sample is a tube holder for the automated filling of MagNa Pure LC Sample Cartridges. The adapter and the cartridge form a fixed combination and cannot be transported with the gripper. The adapter can be temperature controlled up to 70°C. In the software you can find the Thermoadapter LC Sample+Cartridge under *Thermoblocks with plates*.

![Thermoadapter LC Sample](image)

Fig. 26: Thermoadapter LC Sample

Cooling effect of thermoracks and thermoblocks

The PCR racks are cooled by being stored in the refrigerator (passive cooling). Active cooling is possible using the thermal modules.

For the continued temperature curve, the following values apply as a guide.

<table>
<thead>
<tr>
<th>Thermorack or Thermoblock</th>
<th>Plate or Tubes Used</th>
<th>Filling Volume per Well or Tube</th>
<th>Time taken to heat from 0°C to 10°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 1.5 / 2 mL</td>
<td>1.5 mL Safe-Lock tube</td>
<td>1000 μL</td>
<td>~ 30 min.</td>
</tr>
<tr>
<td>PCR 96</td>
<td>96-well twin.tec PCR plate</td>
<td>150 μL</td>
<td>~ 14 min.</td>
</tr>
<tr>
<td>PCR 384</td>
<td>twin.tec 384-well PCR plate</td>
<td>25 μL</td>
<td>~ 10 min.</td>
</tr>
</tbody>
</table>
Reservoirs and ReservoirRack

To supply liquids, reservoirs in sizes 30 mL and 100 mL are available. Up to seven reservoirs are placed in a ReservoirRack to position them on the worktable.

The reservoirs are optimized for eight-channel mode:
- The 100 mL reservoir is recommended for 1000 μL tips.
- The 30 mL reservoir is suitable for all pipette tip sizes.
- In conjunction with the eight-channel dispensing tool, 50 μL and 300 μL tips cannot reach the bottom of a 100 mL reservoir.

Some combinations of reservoirs in the ReservoirRack are already predefined in the software. As administrator, you can furthermore define new combinations of reservoirs and ReservoirRacks. The ReservoirRack cannot be placed on the thermomixer.

For larger volumes, an autoclavable reservoir with a capacity of 400 mL is available. The remaining volume with these reservoirs is approx. 10 mL. The reservoir is made of polypropylene (PP).

![ReservoirRack](image1)

Fig. 27: ReservoirRack

![100 mL reservoir](image2)

Fig. 28: 100 mL reservoir

![30 mL reservoir](image3)

Fig. 29: 30 mL reservoir

![400 mL reservoir](image4)

Fig. 30: 400 mL reservoir (Eppendorf)
Channeling plate and reservoir

In the context of Qiagen applications (QIAamp 96 DNA Blood and QIA_Rnsimple 96) for the epMotion 5075 VAC, a Channeling Plate 96 is used. This can only be used with the 400 mL reservoir of the vacuum unit. Both parts are managed by the software as a single unit under the name EP_Res_400_PP_ChanP in the Tubs labware folder.

ReservoirRack with ReservoirRack module

Up to 7 different ReservoirRack modules can be equipped with vessels in the ReservoirRack. Tubes can be placed in the ReservoirRack when they are in ReservoirRack modules and reservoirs with holders which can be temperature-controlled. The same tubes must be used within a ReservoirRack module. The ReservoirRack can be equipped in any sequence.

Fig. 31: Equipped ReservoirRack

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Labware name for software</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RR Module TC Ø 29 mm</td>
<td>Module TC 29 mm</td>
</tr>
</tbody>
</table>
The temperature of the ReservoirRack and ReservoirRack modules can be actively controlled. However, the ReservoirRack cannot be placed on the thermomixer.

Insert the ReservoirRack modules square in the rack with the coding facing backwards. The contact surfaces should be clean and be parallel on the plate of the thermal module. This ensures optimum temperature transfer.

During temperature-control, you should occupy empty positions in the ReservoirRack with empty reservoirs and lids. This will reduce temperature control duration and minimize the temperature difference between setting and tube liquid. We recommend temperature-controlling equipped ReservoirRack modules to the desired temperature in advance in order to reduce the temperature control duration even further. When temperature-controlling, take account of the fact that ReservoirRack modules are temperature-controlled less well in positions 1 and 7.

If you use the 30 mL and 100 mL reservoirs with holders which can be temperature-controlled, they must be fastened via two connecting webs on each ReservoirRack module.

If the ReservoirRack is to be exclusively equipped with reservoirs which can be temperature-controlled, a maximum of six positions in the rack can be equipped.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Labware name for software</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>RR Module TC Ø 17 mm</td>
<td>Module TC 17 mm</td>
</tr>
<tr>
<td>3</td>
<td>RR Module TC Ø 100 mL</td>
<td>Module TC Reserv100ml</td>
</tr>
<tr>
<td>4</td>
<td>RR Module TC Reservoir 30 mL</td>
<td>Module TC Reserv30ml</td>
</tr>
<tr>
<td>5</td>
<td>RR Module TC Ø 16 mm</td>
<td>Module TC 16mm</td>
</tr>
<tr>
<td>6</td>
<td>RR Module TC Ø 12 mm</td>
<td>Module TC 12mm</td>
</tr>
<tr>
<td>7</td>
<td>RR Module TC Safe Lock</td>
<td>Module TC Safe Lock (for 2 mL and 1.5 mL Safe-Lock tubes) and Module TC Safe Lock 0.5ml (for 0.5 mL Safe-Lock tubes) (use with adapter)</td>
</tr>
<tr>
<td>8</td>
<td>RR Module TC PCR 0.5 mL</td>
<td>Module TC PCR0_5ml</td>
</tr>
<tr>
<td>9</td>
<td>RR Module TC PCR 0.2 mL</td>
<td>Module TC PCR0_2ml</td>
</tr>
</tbody>
</table>

CAUTION!
Burns from hot surfaces.
The reservoir rack may get hot during temperature control.
› Wait until the reservoir rack and the module rack have cooled down completely.

NOTICE!
Material damage as a result of incorrect positioning of module racks.
If the module racks have been put in the reservoir rack with the code facing forwards, there is a risk of collision and faulty dispensing.
› Ensure that all module racks are inserted correctly.
Bores in the ReservoirRack module with diameters 12, 16 and 17 mm and two pins enable tubes of five different heights (5 50, 60, 70, 80, 90 mm) to be positioned. Both pins must be inserted on both sides at the desired height, even if not all the positions are occupied by tubes. The ReservoirRack modules with the diameters 17 and 29 mm occupy two positions in the ReservoirRack.

Do not place the equipped ReservoirRack on A locations or B0.

If you are using the ReservoirRack with ReservoirRack modules and reservoirs in your method, you can only use irregular patterns. Exception: the ReservoirRack is occupied throughout with identically equipped ReservoirRack modules or reservoirs. In this case, the pattern with automatic pattern detection and the standard pattern (in the case of sample transfer) can also be used.

The level detection and ID Label option (only epBlue ID) can be separately adjusted for each ReservoirRack module.

Equipping ReservoirRack modules

The following list contains possible arrangements of ReservoirRack modules with defined tubes:

<table>
<thead>
<tr>
<th>Rack</th>
<th>Tube (labware name)</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR Module TC Ø 12 mm</td>
<td>BD_Tube_5ml_1</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td></td>
<td>CHA_Tube_6.2ml</td>
<td>Chase</td>
</tr>
<tr>
<td></td>
<td>GR_Tube_5ml</td>
<td>Greiner</td>
</tr>
<tr>
<td></td>
<td>SAR_Tube_4.5ml</td>
<td>Sarstedt</td>
</tr>
<tr>
<td></td>
<td>SAR_Tube_5000</td>
<td>Sarstedt</td>
</tr>
<tr>
<td>RR Module TC Ø 16 mm</td>
<td>BD_Tube_11ml</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td></td>
<td>BD_Tube_12ml</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td></td>
<td>BS_Tube_13ml</td>
<td>Bibby Sterilin</td>
</tr>
<tr>
<td></td>
<td>Gr_Tube_11ml</td>
<td>Greiner</td>
</tr>
</tbody>
</table>

NOTICE!

Material damage as a result of the gripper colliding with the module rack.

- Ensure that module rack and tubes do not exceed a height of 126 mm.
Temperature control of ReservoirRack modules

The following values are intended as guide values for temperature-controlling ReservoirRack modules.

<table>
<thead>
<tr>
<th>ReservoirRack modules</th>
<th>Vessel</th>
<th>Temperature change from 23°C to 4°C</th>
<th>Temperature change from 23°C to 37°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Set temperature</td>
<td>Temperature control duration</td>
</tr>
<tr>
<td>3 x RR Module TC Ø 17 mm</td>
<td>SAR_Tube_10ml</td>
<td>Sarstedt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAR_Tube_11ml</td>
<td>Sarstedt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QSP_Tube_11_5ml</td>
<td>QSP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USP_Tube_10ml</td>
<td>USA Scientific plastic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD_Tube_14ml</td>
<td>BD Biosciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GR_Tube_14ml</td>
<td>Greiner</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GR_Tube_15ml</td>
<td>Greiner</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAR_Tube_11ml_1</td>
<td>Sarstedt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAR_Tube_14ml_2</td>
<td>Sarstedt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAR_Tube_14ml_3</td>
<td>Sarstedt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAR_Tube_14ml_2</td>
<td>Sarstedt</td>
<td></td>
</tr>
<tr>
<td>RR Module TC Ø 29 mm</td>
<td>Roth_Tube_54ml</td>
<td>Roth</td>
<td></td>
</tr>
</tbody>
</table>

Temperature change from 23°C to 4°C

- 3°C approx.: 15 min.
- 2°C approx.: 20 min.
- 3°C approx.: 20 min.
- 1°C approx.: 21 min.
- 1°C approx.: 46 min.
- 1°C approx.: 46 min.
- 1°C approx.: 46 min.

Temperature change from 23°C to 37°C

- 38°C approx.: 8 min.
- 38°C approx.: 12 min.
- 38°C approx.: 12 min.
- 39°C approx.: 17 min.
- 39°C approx.: 23 min.
- 40°C approx.: 28 min.
Height adapter

In order to keep transfer times and distances as short as possible for the carrier, there are various height adapters which can be used to compensate for plates of differing heights. Height Adapter and plate may not exceed a total height of 126 mm. Combinations taller than 126 mm are rejected with an error message during configuration of the worktable. For this reason, racks and reservoir holders may not be placed on height adapters.

The adapters are marked with the height in question. The following heights are available.

40 mm: This adapter is suitable for use with 50 μL and 300 μL tips, for example. Labware which fits on taller height adapters can likewise be positioned here.

55 mm: This adapter is suitable for deepwell plates, 300 mL reservoirs, semi-skirted or unskirted PCR plates in a thermoblock and for some skirted PCR plates in a thermoblock, for example.

85 mm: This adapter is suitable for almost all microplates from 6 to 384 wells as well as almost all PCR plates with 96 or 384 wells. The Eppendorf PCR plate twin.tec (skirted, 96 or 384 wells) can be inserted with a thermoblock at this height.

Vac Holder: this adapter is required in conjunction with the vacuum unit. The Vac Frame is temporarily stored on the Vac Holder with the aid of the gripper. The Vac Holder is always positioned in location C4.

Thermodapter Frosty

The Frosty thermodapter is a special type. It is particularly suitable for users who have used the Eppendorf PCR Cooler during manual PCR setup and who wish to continue using this form of cooling. To do so, the cooling unit of the PCR Cooler is placed in a modified height adapter and a skirted PCR plate (e.g., a 96-well twin.tec PCR plate) positioned on that. Other PCR plates cannot be used. The cooling unit cannot be equipped with 0.2 mL PCR tubes when it is used in the epMotion.

The cooling unit does not affect the overall height of height adapter and skirted PCR plate. Note on editing the method: when editing the worktable for the Frosty Thermodapter (Adap_frosty), only select a skirted PCR plate for the location. The cooling unit to be used is not named in the software.
Notes on the cooling unit.

- The unit should be deep-frozen with the underside of the unit facing upwards.
- The cooling unit then displays the overshooting of a temperature of 7°C by changing color from purple to pink or from dark blue to light blue. A key factor in cooling samples is the color value in the depressions in the cooling unit.
- The cooling action of the cooling unit is comparable to manual use of the PCR Cooler.

Plates

Files are available for the following labware:

- Microplates (MTP) with different numbers of wells
- Deepwell plate (DWP) with different numbers of wells
- Skirted PCR plates with different numbers of wells
- Filter plates
- Tube plates with 96 individual tubes
- Rack for microtubes in a 96-well grid

The plates described here can be positioned straight onto the surface of the worktable at a location. The prerequisite for this is that the plates in question have been activated in the software (see *Activate or deactivate labware* on p. 101).

![Fig. 34: Microplate (MTP) with 96 wells](image1)

![Fig. 35: Microplate (MTP) with 24 wells](image2)

![Fig. 36: Deepwell plate (DWP) with 96 wells](image3)

Hint!

Semi-skirted or unskirted PCR plates can only be used on the epMotion in conjunction with a thermoadapter or thermoblock.

Hint!

Plates and racks must be inserted at right-angles to the base.

In the *Plates* labware folder you will find a large selection of various plates. These are arranged in specific subfolders by plate type:
Tab. 2: Plates labware folder

<table>
<thead>
<tr>
<th>Plates labware folder</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTP 96</td>
<td>Microplates, 96 wells</td>
</tr>
<tr>
<td>MTP 384</td>
<td>Microplates, 384 wells</td>
</tr>
<tr>
<td>MTP 24 + DWP 24</td>
<td>Microplates and deepwell plate, 24 wells</td>
</tr>
<tr>
<td>MTP 6</td>
<td>Microplate, 6 wells</td>
</tr>
<tr>
<td>PCR 96</td>
<td>PCR plates, 96 wells</td>
</tr>
<tr>
<td>PCR 384</td>
<td>PCR plates, 384 wells</td>
</tr>
<tr>
<td>DWP 96</td>
<td>Deepwell plate, 96 wells</td>
</tr>
<tr>
<td>DWP 384</td>
<td>Deepwell plate, 384 wells</td>
</tr>
<tr>
<td>Filter Plates 96</td>
<td>Filter plates, 96 wells</td>
</tr>
<tr>
<td>Filter Plates 384</td>
<td>Filter plates, 384 wells</td>
</tr>
<tr>
<td>Tube Plates 96</td>
<td>Plates with up to 96 individually removable tubes</td>
</tr>
</tbody>
</table>

Lids

Vac Lid (epMotion 5075 VAC only)

The Vac Lid (epMotion VAC sealing foil U.S. Pat. No. 6,666,978) contains 96 bores which match the positions of the 96 wells of the filter plates. If there are unfilled wells in a filter plate, the relevant bores of the Vac Lid can be covered with Vac Lid mats. This improves extraction of the liquid.

16, 32, 48, 64 or 80 bores of the Vac Lid can optionally be covered by Vac Lid mats. The number of bores which can be covered is embossed in the individual Vac Lid mats. The Vac Lid mats are held in the correct position on the Vac Lid with the aid of pins.

Vac Thermo Lid (epMotion 5075 VAC only)

epMotion 5075 VAC only. The Vac Thermo Lid is for optimizing vacuum steps within automated nucleic acid preparation methods. Using the Vac Thermo Lid the remaining alcohol in filter plates can be minimized in a Vacuum command. This reduces the risk of alcohol contamination in sample solutions.

To use the Vac Thermo Lid, it is necessary for there to be a thermal module on the epMotion. In addition to the vacuum unit, the Vac Thermo Lid can only be placed on a thermal module.
However, the Vac Thermo Lid cannot be placed on the thermomixer.

Burns from hot surfaces.

- The underside of the Vac Thermo gets hot during temperature control.
- Wait until the Vac Thermo Lid has cooled down completely.

- The heating of the Vac Thermo Lids to 110°C (max. achievable temperature) takes approx. 30 min. For the expedient execution of a method it is therefore useful to bring the Vac Thermo Lid to the desired temperature before starting the method.
- When placing the labware on the worktable, make sure that no ReservoirRack with modules (only ReservoirRacks with reservoirs) are in the transport path of the Vac Thermo Lid. The height of this labware means it is not possible to travel over it.
- The maximum stacking height is 126 mm.

Position the Vac Thermo Lid on a thermal module and heat it to a temperature of 110°C. The high heat capacity of the lid stores the heat. Before the actual start of the Vacuum commands the Vac Thermo Lid is transported by the gripper via a Transport command from the thermal module to the vacuum unit. During a Vacuum command air is sucked inside the Vac Thermo Lid through the 96 boreholes which heats up when flowing through the block. The heated air flows through the filter plates and supports elimination of the remaining alcohol in the process. After exiting the Vacuum command the Vac Thermo Lid must be positioned on the temperature control unit again via another Transport command.

12.1.3 Abbreviations used

Each labware Name includes information about the manufacturer and labware type, e.g., `EP_pDNA_384_MTP_1` (EP = Eppendorf, pDNA_384 = Collection Plate for PerfectPrep Plasmid 384 Kit, MTP = micro test plate). If a manufacturer abbreviation is not used, it is an Eppendorf item. The following sections contain explanations of the abbreviations used.

Manufacturer

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>Abgene</td>
</tr>
<tr>
<td>AXYG</td>
<td>Axygen Scientific</td>
</tr>
<tr>
<td>ABI</td>
<td>Applied Biosystems</td>
</tr>
<tr>
<td>BD</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>BRAN</td>
<td>BRAND</td>
</tr>
<tr>
<td>BS</td>
<td>Barloworld Scientific</td>
</tr>
<tr>
<td>CO</td>
<td>Corning/Costar</td>
</tr>
<tr>
<td>ELK</td>
<td>Elkay</td>
</tr>
<tr>
<td>EP</td>
<td>Eppendorf AG</td>
</tr>
<tr>
<td>FALC</td>
<td>Falcon</td>
</tr>
<tr>
<td>GENE</td>
<td>Genetix</td>
</tr>
<tr>
<td>GR</td>
<td>Greiner</td>
</tr>
<tr>
<td>IWA</td>
<td>Iwaki</td>
</tr>
<tr>
<td>LAMB</td>
<td>One Lambda</td>
</tr>
<tr>
<td>MAT</td>
<td>Matrix</td>
</tr>
<tr>
<td>MI</td>
<td>Millipore</td>
</tr>
</tbody>
</table>
Other abbreviations in labware names

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWP</td>
<td>Deepwell plate (DWP) with 24, 96 or 384 wells</td>
</tr>
<tr>
<td>FP</td>
<td>Filter plate</td>
</tr>
<tr>
<td>MTP</td>
<td>Micro test plate with 6, 24 ... 96, 384 wells</td>
</tr>
<tr>
<td>PCR</td>
<td>Plate for PCR (Polymerase Chain Reaction)</td>
</tr>
<tr>
<td>TP</td>
<td>Tube plate (plate with individually removable tubes)</td>
</tr>
<tr>
<td>Cleanup</td>
<td>Plate is included in the PCR Cleanup Kit</td>
</tr>
<tr>
<td>DNA/RNA</td>
<td>Plate is included in the kit for purification/isolation</td>
</tr>
<tr>
<td>TT</td>
<td>Eppendorf twin.tec</td>
</tr>
<tr>
<td>PCR Plate Thermo</td>
<td>Fixed combination of thermoblock and PCR plate</td>
</tr>
<tr>
<td>Numbers</td>
<td>For example, ({5ml}) or ({200}) = maximum filling volume (each tube or well) in mL or µL</td>
</tr>
</tbody>
</table>

12.1.4 Labware definitions

The following folders are present for labware and labware combinations:

<table>
<thead>
<tr>
<th>Labware folder/</th>
<th>Content</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tips</td>
<td>pipette tips</td>
<td>(see p. 190)</td>
</tr>
<tr>
<td>Plates</td>
<td>Various subfolders for plates (e.g., MTP 96, Tube Plates)</td>
<td>(see p. 203)</td>
</tr>
<tr>
<td>Equip Racks + Modules with Tubes</td>
<td>Combinations of racks, thermoracks and tubes and Safe-Lock tubes and for equipping ReservoirRack modules</td>
<td>(see p. 191) and (see p. 198)</td>
</tr>
</tbody>
</table>
12.1.5 Compile your own labware combinations

The labware combinations are summarized in the labware file window in folders. You can activate or deactivate labware in the folders.

You can also create your own labware combinations from the components that are available (e.g., rack-tube combinations), or delete them using the icon or the Delete pop-up menu.

When editing a method, activated labware combinations as well as activated labware are displayed in a list.

Folder for labware and labware combinations and liquids

Hint!

Beyond the preconfigured standard labware available ex works, it is also possible to dimension individual or external labware for use with the epMotion 5075 and to incorporate it in the labware directories of the software. For more information on this, contact Eppendorf Service.

Requesting labware definitions

Hint!

You can find more than 350 labware files for downloading at www.epMotion.com.

If tubes or plates you require are not yet defined in the software, send the appropriate request to the following address:

Eppendorf AG
Application Support:
Phone: +49 180 366 67 89
E-mail: support@eppendorf.com
Fax +49 538 01 556 or +49 539 901 25
12.2 Tools (dispensing tools)

Dispensing tools are piston-stroke pipettes working on the air-cushion principle. If the piston in the dispensing tool moves up, liquid can be aspirated into the tip. Piston movements in a downward direction dispense the liquid. The piston movement is effected by a stepper motor in the carrier, in all 8 channels simultaneously in multi-channel tools.

![Single channel dispensing tool TS 50, volume range 1-50 μL](image)

![Eight channel dispensing tool TM 50-8, volume range 1-50 μL](image)

![Single channel dispensing tool TS 300, volume range 20-300 μL](image)

![Eight channel dispensing tool TM 300-8, volume range 20-300 μL](image)

![Single channel dispensing tool TS 1000, volume range 40-1000 μL](image)

![Eight channel dispensing tool TM 1000-8, volume range 40-1000 μL](image)

More information about tools can be found in the product description of this operating manual (see Dispensing tools (tools) on p. 16).

Following the start of a method, all the subsequent steps run fully automatically.

- If required, the Optical Sensor checks the correct selection, positioning and filling level of tubes and the supply of tips in Tip Racks.
- The correct dispensing tool is detected by the code in the tool.
- Depending on the dispensing tool, one or eight pipette tips are picked up.
- If the further procedure has been defined in the method by supply of the worktable and in the procedure by commands, the carrier moves the dispensing tool to the source location. The required liquid is aspirated. The carrier then moves the dispensing tool to the first destination location.
Furthermore

- Water can be pipetted from 1 μL and multidispensed from 3 μL.

An undershooting of the recommended dispensing volumes is possible but it is your own responsibility. Ensure that in this case the dispensing for your application is sufficient.

- Depending on the method, other destination positions are possible. The dispensing or transport pattern is likewise specified within the command.
- The number of samples can be entered at the start or specified with priority in the method.
- The time of the pipette tip change can likewise be programmed.
- Liquid can likewise be mixed in the pipette tip before aspiration and after dispensing.
- Optimum dispensing parameters are achieved by selecting a liquid type in the commands.
- If other commands in a method require different dispensing tools, the change in dispensing tool which will have to be performed by the user is shown in the display in the started method.

12.3 Thermal module

The temperature of thermal modules can be set in the software from 0 °C to 110 °C.

Tab. 3: Duration of cooling and heating of different components with the aid of the thermal module

<table>
<thead>
<tr>
<th></th>
<th>Filling volume with water/well</th>
<th>Cooling from 25 °C to 4 °C at a temperature setting to</th>
<th>Minute(s)</th>
<th>Heating from 25 °C to 37 °C at a temperature setting to</th>
<th>Minute(s)</th>
<th>Heating from 25 °C to 95 °C at a temperature setting to</th>
<th>Minute(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal module</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>without labware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With a thermoadapter</td>
<td>50 μL</td>
<td>3°C</td>
<td>7</td>
<td>38°C</td>
<td>5</td>
<td>104°C</td>
<td>11</td>
</tr>
<tr>
<td>with a 96-well skirted twin.tec PCR plate on it</td>
<td>With a thermoblock with a 96-well skirted twin.tec PCR plate on it</td>
<td>50 μL</td>
<td>3°C</td>
<td>6</td>
<td>37°C</td>
<td>4</td>
<td>101°C</td>
</tr>
<tr>
<td></td>
<td>With a thermoadapter with a 384-well skirted twin.tec PCR plate on it</td>
<td>10 μL</td>
<td>3°C</td>
<td>5</td>
<td>37°C</td>
<td>5</td>
<td>103°C</td>
</tr>
<tr>
<td></td>
<td>With a thermoblock with a 384-well skirted twin.tec PCR plate on it</td>
<td>10 μL</td>
<td>3°C</td>
<td>5</td>
<td>37°C</td>
<td>5</td>
<td>98°C</td>
</tr>
<tr>
<td></td>
<td>With 24 well thermorack with 0.5 mL Safe-Lock tubes</td>
<td>350 μL</td>
<td>3°C</td>
<td>24</td>
<td>37°C</td>
<td>16</td>
<td>101°C</td>
</tr>
<tr>
<td></td>
<td>With 24 well thermorack with 1.5 mL Safe-Lock tubes</td>
<td>1200 μL</td>
<td>3°C</td>
<td>30</td>
<td>38°C</td>
<td>18</td>
<td>104°C</td>
</tr>
<tr>
<td></td>
<td>With 24 well thermorack with 2.0 mL Safe-Lock tubes</td>
<td>1700 μL</td>
<td>3°C</td>
<td>25</td>
<td>37°C</td>
<td>17</td>
<td>100°C</td>
</tr>
</tbody>
</table>
The statements made here apply to an ambient temperature of approx. 25 °C and to the edge positions of the labware in question. The thermal modules were temperature-controlled to the relevant target temperature before the labware was put on.

12.4 Optical sensor

12.4.1 Function

The optical sensor (U.S. Pat. No. 6,819,437) is used, among other things, for detecting the filling level of tubes. If you are working in a method with defined and constant volumes and you specify these when editing the method, filling level detection can be dispensed with. On MTPs with 384 wells and 0.2 and 0.5 mL tubes, it is not possible to measure liquid. Liquid measurement is not recommended for MTPs with 96 wells.

Principle

The reflection of light is detected by a receiver with the aid of a lateral light source, a semi-transparent mirror, a lens and motion in the z direction in the desired position; the software then evaluates the maximum. The reflections of light provide information about surfaces and liquid level. Detection operations can be performed using the reflections of light.

Use the Functions tab to define a default setting for the optical sensor:

- Liquid detection (detection of liquid surfaces) (see p. 212)
- Tips (tip detection) (see p. 213)
- Locations (detection of location occupation) (see p. 215)

Double-click on the labware on the worktable to show the detection variants. In Worktable mode you can switch scanning of liquid surfaces on or off for any marked labware:
To switch scanning on or off for a specific run for all locations, activate the corresponding option immediately after starting the method.

If the filling volumes of the tubes are easy to detect in the method to be started, you can reduce processing time by switching off the optical sensor and entering volume manually. If destination tubes are empty, it is quicker to enter a volume "0" than to scan with the optical sensor. Filling volumes which are known should be defined when you edit the method.

If the optical sensor is switched off, a display for entering filling volume is automatically faded in as the method continues.

Detection is possible up to a labware height of 126 mm.
12.4.2 Detection version 1: detecting liquid surfaces

Level Detection applies generally for Liquid Detection in all labware. You switch Level Detection on or off when you start a method.

If Levels is activated, the surface of the liquid is scanned in the case of labware for which Liquid Detection is set to All positions. If Levels deactivated, there is no detection of liquid surfaces (liquid detection).

Liquid Detection relates to the labware. Liquid Detection switches the optical sensor for detecting the surfaces of liquids on or off. When detecting the surface of a liquid, the optical sensor can only detect approximately horizontal (plane) surfaces. The surface must be at 90° ± 3° in relation to the optical beam axis. If the curvature of the surface is too extreme as a result of the physical properties of the liquid, tube or tube geometry, the optical sensor can no longer detect the liquid level. In this case, the user must enter the volume.

It is not possible to detect filling levels in 384-well plates; it is recommended to only a limited extent for 96-well plates to minimize the time required. Where Number of Samples ≤ 10, only Off and All Positions are displayed for selection.

Liquid Detection selection options

Off

If you set the optical sensor to Off, 24 individual volumes can already be defined for a 24-tube rack when editing, for example:
If you start with the volume entry in the first row, the volume will be adopted for all positions automatically. To do this, mark the **Volume** column and then click in another field. One correction per row is then possible.

For locations in which the optical sensor is switched off, the required volume is automatically displayed upon starting. The volume is displayed if the volume has been specified in the Worktable. Volumes can be corrected at this point. Empty destination locations are not automatically displayed to allow the volume to be checked and entered at the start of the method. If a volume is to be displayed automatically for destination labware at the start, enter a volume not equal to “0” when editing. If you are using the Rack 96 (two-location rack), you must make identical entries to the worktable for the two occupied locations.

Random Access

Random access allows scanning for the first and last position plus 8 other random positions. Random access is recommended when tubes or wells have very similar filling levels within a location and the scanning procedure time is to be reduced.

Random access performs liquid detection only in positions which are defined via Number of Samples and Pattern. In the case of random access, the smallest volume determined is always used for all tubes or wells of a location for aspirating or dispensing the liquid. If there is a number of samples of 10 or less when the method is started, all the tubes affected are scanned by the optical sensor.

Notes: If filling levels differ significantly in one location, check whether the **Aspirate from bottom** and **Dispense from top** options are better alternatives to **Random Access**.

All positions

If automatic detection is required, Liquid Detection must be marked with **All Positions**.

If all wells are scanned in a 96-well plate or 24-tube rack, each volume is administered separately when a single-channel dispensing tool is used.

In the case of eight-channel dispensing tools and a 96-well plate, the following applies: observe the largest volume within a column (8 wells) when dispensing liquid. Observe the smallest volume within a column (8 wells) when aspirating liquid.

Optical sensor check run

If the optical sensor is unable to perform location detection successfully, you have the option of bypassing detection and entering the volume manually. To do so, mark **User input**. Check first whether the correct labware is positioned in the location. The method may not be continued if there is incorrect labware in the location.
Switch Level Detection on and off

If Level Detection is switched on and if variants for scanning the surface of the liquid are selected in the method for these locations, scanning is effected in the start routine.

If Liquid Detection for labware or Level Detection are switched off, all the volumes required are queried at the start.

If you would like to specify the volume, exceed the specified minimum volume after the start. Make sure that you do not exceed the maximum volume. Once you have completed your input, press Enter. The entry should match the actual filling level of tube.

The specified volume does not take account of the way the shape of the meniscus of the liquid varies in the different tubes, for example. An inadequate volume could therefore lead to faulty dispensing.

At the start, it is possible to make an individual volume entry or volume correction for each tube in racks and reservoirs. With 96-well and 384-well plates, the one volume input applies to all wells.

12.4.3 Detection variant 2: Tip detection

Both the identity of the tip racks (volume range; with/without filter) in the locations and the presence of tips in the rack are detected. A code on the sides of the tip rack enables the tip type and supply quantity to be detected. If more tips are required for the method than are present, these extra tips are requested in the method once the existing tips have been exhausted. If tip detection is switched off, you will have to ensure that the tip rack is adequately supplied starting from the back left (coordinate A1) and that the specifications of the worktable corresponds to the method to be started.

12.4.4 Detection variant 3: Location detection

A code in the corresponding racks enables correct occupation of a worktable location to be detected. Even racks positioned the wrong way round are detected, with the exception of reservoir racks. Plates are detected by height.
12.4.5 Detection limits

Depending on tube geometry, there are different detection limits for the optical sensor when detecting filling level (liquid detection). Information about the detection limits can be displayed if you click on Info in the file window. So that aspiration can be performed from tubes with filling levels below the detection limit of the optical sensor, a volume must be entered at the start of the method. This entry can be made in the start routine using the keyboard, even after the relevant error message from the optical sensor. The detection limit of the optical sensor generally starts at filling levels above 3 mm.
13 Appendix B: Software

13.1 Commands, parameters, options

This section includes detailed information about commands and parameters. This information is supplemented by the descriptions in the section entitled "Operation".

The parameters and options of the commands are described in detail in the section entitled "Sample Transfer". Parameters and options of individual commands which deviate from Sample Transfer are described separately.

13.1.1 Number of Samples

Use the Number of Samples command to specify how many samples are to be processed in the subsequent steps of the procedure. It applies to all commands until the next Number of Samples of the procedure. If you do not enter this command, a question is asked about the number of samples when the device starts up. This entry then applies to all the commands of the method.

The maximum number for Number of Samples results, dependent on the command, from the plate or rack type in the destination or source vessel location. For example, the largest value for two 384-well plates is 768.

Further restrictions on the maximum number result from the pattern and the number of tubes per rack or wells per plate. For example, the sum of the aspiration locations in the source vessel location during Sample Transfer can be smaller than the sum of the dispensing positions in the destination vessel location.

Depending on the type and purpose of the subsequent commands Number of Samples has different effects:

- **Sample Transfer**: number of samples picked up by the source vessel plate.
- **Reagent Transfer**: number of wells of the destination vessel plate into which the reagent is dispensed.
- **Dilute**: number of samples to be diluted.
- **Pool and Pool One Destination**: number of wells in the source vessel plate from which liquid is aspirated.
- **Mix**: number of wells in the plate in which the liquid is mixed.

Define parameters

- **Fix Number of Samples**:

 Activate this option if a fixed number of samples is to be defined for each method start. At the start, there is no Number of Samples request.

 Deactivate this option if the number of samples is to be entered by the user when the method is started.
• **Max Number of Samples:**
 At the start of the method, the number entered here is accepted as the maximum input value. When the pattern is displayed, *Max number of Samples* is taken into account.

• **Comment** is displayed at the start of the method and the *Number of Samples* request. The comment can provide information about which entries are meaningful here or to which commands the entry relates (e.g., maximum number of samples, to single-channel or eight-channel dispensing tool and Reagent or Sample Transfer).

Fix Number of Samples and *Max Number of Samples* both apply until the next *Number of Samples* command in the procedure.

The *Number of Samples* request is asked first at the start. If *Number of Samples* is contained several times in a procedure, the request occurs in succession as many times as required (exception *Fix Number of Samples*).

If part of a procedure in the method is not to be executed, enter "0" as a value.

Information about entering Number of Samples

• **Eight-Channel Dispensing Tools**
 Example of *Number of Samples* entries with an eight-channel dispensing tool:
 An entry of "1" to "8" means that 8 "samples" will be processed. An entry of "9" means that 16 "samples" will be processed etc. This applies correspondingly to a 384 plate. Note that with a 384-well plate, only every other well in a column will be served by the eight-channel dispensing tool. Further procedure depends on the pattern.

• **Sample Transfer**
 Example: a 96-well plate is to be filled by two full 24-position racks. For every rack the method contains a Sample Transfer command in which a rack has been defined as source vessel. The *Number of Samples* command has been entered once. In order to transfer 24 samples to the plate from both the racks, enter the value "24". A total of 48 transfers is thus effected. An entry of 10 would mean that in each rack, the tool aspirates from 10 positions. The maximum number for *Number of Samples* is 24.

 If both racks are to be processed consecutively, a Sample Transfer command with both racks as source vessel is defined in the method. An entry of 30 would then mean that the Sample Transfer would be carried out in full in the first rack (24 transfers) and six times in the second rack. The maximum number for *Number of Samples* is 48.

 In order for the different execution options to be detected at the start, enter a comment on the *Number of Samples* when editing the method.

• **Reagent Transfer**
 The entry of the *Number of Samples* for the Reagent Transfer relates to the destination vessel.

• **Dilute**
 Number of Samples before the *Dilute* command defines the numbers of samples to be diluted. The dilution steps are defined in the pattern. Dilution steps are possible only within a location; they are limited by a row or column. In other words, with a 96-well plate, all the wells of one row can be filled with diluent and 12 dilution steps could be performed. In this case, the undiluted sample would be aspirated from another location in the first step.

• **Pattern**
 Examples for limiting the *Number of Samples* by the pattern in a Sample Transfer: If only every second sample is aspirated from a 96 well plate (source vessel), the maximum input is: 48 (96 : 2 = 48).

 If one sample is aspirated from a 96 well plate (source vessel) and dispensed twice into another 96 well plate (destination vessel), then the maximum *Number of Samples* is 48.

 Reason: Sample Transfer applies here from one source vessel to one destination vessel; here 48 x 2 = 96 applies. If, however, a second 96 well plate was available in the command as destination vessel, the 96 samples could be transferred either continuously (first plate A complete, then plate B) or alternating (plate A, plate B, plate A, etc.). Whether the transfer is continuous or alternating is defined in the pattern of the method.
13.1.2 Sample Transfer

The command transfers samples from several locations of a source vessel plate to several locations of a destination vessel plate in accordance with the defined patterns.

![Diagram of Sample Transfer](image)

Fig. 45: Diagram of Sample Transfer

The number of samples picked up from the source vessel plate depends on the preceding command *Number of Samples*.

The Sample Transfer command automatically carries out an ID tracking (transfer of IDs to the destination labware) when the source labware is provided with IDs.

Define parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipet Tool</td>
<td>TS, 390</td>
</tr>
<tr>
<td>Transfer Type</td>
<td>Pipette</td>
</tr>
<tr>
<td>Volume</td>
<td>30 μL</td>
</tr>
<tr>
<td>Transfer type</td>
<td>Pipette</td>
</tr>
<tr>
<td>Source</td>
<td>sbCK_1</td>
</tr>
<tr>
<td>Destination</td>
<td>sbCK_2</td>
</tr>
<tr>
<td>Pipette:</td>
<td>Aspiration and dispensing of the volume entered.</td>
</tr>
<tr>
<td>Multidispense:</td>
<td>Dispensing of the volume entered at every dispensing step. Number of steps and quantities aspirated depend on the Number of Samples.</td>
</tr>
</tbody>
</table>

Pipet Tool

Select Dispensing Tool The name “TS” (tool, single channel) stands for single-channel dispensing tools while “TM” (tool, multi channel) stands for eight-channel dispensing tools. The selection depends on the tubes used and the volume. Eight-channel dispensing tools cannot be used with 24-tube racks, for example. When selecting the dispensing tool, be aware of immersion depth into the tubes.

Filter Tips: Define whether pipette tips with filters are used in the method.

Volume

Enter the volume and select μL or nL. With volumes of up to 99.9 μL a decimal place is available.

Transfer type

- **Pipette:** Aspiration and dispensing of the volume entered.
- **Multidispense:** Dispensing of the volume entered at every dispensing step. Number of steps and quantities aspirated depend on the Number of Samples.

Barcode

Hint!

With small volumes, pipetting always provides better free-jet capability as well as precision and accuracy. When pipetting, in contrast to multidispense, only the required volume is aspirated and dispensed. However, please note that multidispense represents a very rapid type of dispensing. With the multidispense option, a 96-well plate can be filled in 35 to 60 seconds.

However, with multidispensing the measurement errors identified for pipetting are exceeded (see Dispensing Tools on p. 178).
Source and Destination: A selection is only possible if the worktable is already equipped with labware. When you press the Source or Destination buttons, displays with corresponding selection lists will become available. The selection is made using the labware positioned on the worktable. Up to four locations can be selected as source or destination vessels within a command.

After selecting the source and destination vessels the respective labware names are displayed. You can also dispense within a plate, in which case the source vessel and destination vessel are identical.

If the source or destination labware is deleted from the worktable, the labware name will be shown in gray in the parameter settings. The source labware or destination labware has to be defined afresh or an error message is issued when starting the method.

Pattern: Define pattern. Patterns can be defined with automatic pattern detection, as simple standard patterns (Sample Transfer only) or free patterns (irregular). The patterns are independent of direction. Regular patterns are detected by the software after just a few entries, and completed without further entries.

If the labware is changed after the pattern has been entered, a corresponding warning sign appears when a new labware is selected. If the same tube type (e.g., MTP 96) is retained, the pattern can be adopted.

If no destination vessel is defined in the pattern in default pattern or in pattern with automatic sample detection, the software automatically completes the pattern in the direction of the rows (from left to right).

Pattern with several plates as source or destination vessels

If several plates are available as source vessels and/or destination vessels, the display pattern is expanded as follows:

Begin entering the pattern with the top labware. The labware is displayed here in the order of the source or destination vessel definition. The source vessel is shown on the left, the destination vessel on the right.

If the same sample or liquid is to be transferred to specific wells of all plates following the same pattern, an entry for all plates in the Source or Destination display is only required for the first transfer. During the second transfer only an entry in the very first labware of the source or destination is required.
Example pattern for several plates

Objective

One sample is to be transferred from a 24-tube rack in each case eight times to four 96-well plates. The pattern for one plate is also to apply to the other plates.

This example describes only the steps relevant to a pattern. It is assumed that the worktable has been loaded and commands and parameters have been specified.

1. Define the 24 well rack as source vessel.
2. Define the 96 well plates as destination vessel.

3. Define the pattern. To do so, define an aspiration location of the source vessel.

4. Define the dispensing positions of the destination vessel.

Detailed descriptions on pattern can be found in the chapter "Operation" (see Editing the pattern for a Transfer command on p. 78).
5. Click on the first well in the second plate.
 The entire column will be adopted in accordance with plate 1. Continue analog with additional destination vessels.

6. Complete the pattern. Subsequently the pattern for the destination vessel only has to be entered for the first plate. The pattern is transferred to all additional destination plates.

Options

You can make further settings via Options.

Immersion depth and dispensing height

Aspirate from bottom

This version is especially recommended for smaller tubes. It is not necessary to scan MTP and PCR plates if the required volume is much smaller than the existing one.

At the start only enter a volume for the plate which approximately corresponds to the actual volume and allows for any aspirations and additions which may be required. The volume entered does not affect the position of the pipette tip with Aspirate from bottom or Dispense from top. To prevent tubes overflowing during aspiration, the level of the tubes must not exceed the working volume. With Aspirate from bottom, the tip is positioned approx. 1 mm above the bottom of the tube. The distance from the bottom of the tube depends on the tolerances of the tube type and can be modified by the administrator. After liquid has been aspirated, the tip is moved slowly out of the tube.
Aspirate from bottom is not recommended for tubes > 3 mL with high filling levels. In the case of viscous solutions, the outer wetting which results may increase the risk of contamination and falsify the dispensing result.

With very large tubes (e.g., centrifugation vessels or reservoirs) and high filling levels it is even possible for the entire tip and the tip cone of the dispensing tool to become wet. You should always avoid high filling levels.

With large tubes, the length of the 50 μL and 300 μL tips and the dispensing tool result in restrictions on immersion depth, leading to a higher remaining volume compared to the 1000 μL tip.

Dispense from top
Dispense from top is a fast version for dispensing a liquid into a destination vessel, because the z movement up to approx. 3 to 4 mm above the liquid prior to dispensing is omitted. Liquid is dispensed in the top area of the tube. The tubes may not be filled above maximum filling volume. Dispense from top can also be used for pipetting and on smaller tubes or plates with different filling levels. As the tip remains in the top area of the tube and does not move down into the tube, the risk of contamination is virtually ruled out. The greater distance from the liquid may impair target accuracy at minimal dispensing volumes. With a small volume and tubes > 5 mL, the tip might not reach the bottom of the tube or the liquid provided. There is a risk of the liquid touching the tube wall above the liquid provided. With larger volumes, liquid could well splash up. Certain dispensing speeds may not be exceeded for acceptable dispensing. Dispense from top should be validated by corresponding trials.

Elution from filter
This function is especially suited to the aspiration of liquids from corresponding filter plates (currently only PCR cleanup filter plates). The following special features apply to this option:

- Do not enter a volume for Sample Transfer.
- The piston movement in the dispensing tool for aspirating liquid starts as soon as the tip starts moving down in the well. The maximum stroke is used for each dispensing tool. This also applies to dispensing.
- The tip travels easily into the resilient filter material.
- In combination with the test PCR cleanup a Mix before aspirating is recommended.
- The Elution from filter function relates to the source vessel.

With the elution function, virtually complete aspiration of the liquid from the filter plate is achieved.

- In the Sample Transfer command under Transfer Type select pipette.
- The aspired liquid is dispensed into the destination vessel.

When transporting the liquid, the usual appearance of the liquid in the pipette tip does not apply. There may be air bubbles at several points in the pipette tip. The air segment at the bottom end of the pipette tip may not be clearly pronounced.
At different volumes you save time if the optical sensor is not used to determine liquid level. However, selecting Aspirate from bottom and Dispense from top ensures that liquids are dispensed and professionally dispensed. You are still asked at the start to enter a volume for a plate with 96 wells (exception: destination labware which had a volume “0” when the worktable was edited). The intention is to select an average volume for all wells with Aspirate from bottom or Dispense from top.

Changing pipette tips (Change Tips)

Under Options you can determine the time when tips are changed. The following is displayed:

Change tips ...

- ... when command is finished
 The tips are not ejected until the command is finished. This is recommended in the case of repeated aspiration of a particular reagent for filling all the wells of a plate, for example.

- ... before asp. for next destination, well
 Tip change before aspirating from a new location. If many different liquids are aspirated from a plate or rack, the new liquids must not come into contact with old remaining liquid in the tip. Tip change is therefore advisable.

- ... before each aspiration
 No tip is filled twice, Even if it is the same source vessel for the aspiration. Should always be used for Mix after dispensing to prevent contamination of the source with liquid traces from mixing in a destination vessel.

- ... keep tips, do not change tips
 The tips continue to be used in the next command. If the next command is likewise defined with keep tips, do not change tips, use also continues to the command after next and so on (sensible if a nutrient medium is to be distributed on many empty plates, for example).
 Particularly with liquid which tends to foam, failing to change tips after multiple aspirations can lead to extra volume in the tip. This extra volume may cause contamination of the dispensing tool. If transfer type pipette is changed to multidispense, after the first command an ejection occurs even if keep tips, do not change tips is selected.

- ... after: aspirations In the input field you can set the number of strokes after which the tips should be ejected. This function is available if ... keep tips, do not change tips has been selected.

Special features of multidispense:

With multidispense, a slight extra volume needs to be aspirated.
Motion® 5075 with integrated PC and epBlue™ — Operating manual

- ... before asp. for next destination, well:
 - Extra volume is returned into the old source vessel
 - Change tip
 - Liquid aspiration from new source vessel
- ... before each aspiration:
 - Extra volume is discarded into the waste
 - Change tip
 - Liquid aspiration from new or old source vessel

Mix

Mix before aspiration or after dispensing

If Mix before aspirating and/or Mix after dispensing is selected, a display for setting mixing parameters appears when you click on the adjacent button.

![Sample Transfer](image)

If Fixed height is not selected, the following applies:

- The settings for immersion depth, blow-out (to aspirate the remaining liquid), delay time to start blow-out, etc. are automatically taken from the selected liquid type.
- If Aspirate from bottom has been selected, this immersion depth also applies to Mix before aspirating.
- If Dispense from top has been selected, the volume known at the start will be used for mixing in conjunction with the Liquid type immersion depth for Mix after dispensing.

Unlike with all other forms of dispensing (free flow) in dispensing with mixing there is contact with the liquid in the destination vessel. Particular note should be taken of this when setting tip change.

Mixing volume is always less than the current filling volume in the tube, as the remaining volume of the aspiration cannot be used for mixing. The remaining volume for the correspondingly marked tube may be viewed in the Labware properties section via the Open a labware window, for example. In the case of very large tubes (e.g., conical tubes) larger remaining volumes result with the 50 μL and 300 μL tips in combination with the geometry of the dispensing tool than with the 1000 μL tips.

In the case of deviations from the predefined liquid type, determine the optimum mixing speed in trials. Carefully increase the mixing speed during these trials. Use very high speeds only for correspondingly viscous solutions. At very high speeds, large volumes and multiple mixing cycles, liquid may get into the dispensing tool (e.g., foam formation). The use of filter tips will increase reliability.

The entire mixing process takes place in the liquid. When the liquid is aspirated and dispensed, the dispensing tool is moved accordingly in the z direction. Blow-out is performed at the end above the liquid. A mixing cycle consists of an upward and a downward movement.

The Mix after dispensing mixing variant can only be used in conjunction with the Pipette dispensing variant.
If liquids whose physical properties of viscosity, vapor pressure and surface tension differ significantly from those of water are to be dispensed, we recommend selecting a different liquid type. The predefined liquid types are arranged to work at a consistent immersion depth for aspiration. During aspiration, the dispensing tool moves on to suit aspiration speed, tube geometry and aspiration volume.

Check every selected liquid type and every parameter change in conjunction with other commands by test-running the method. The predefined liquid types represent recommendations. If necessary, adapt the settings to your requirements.

The following liquid types are available:

<table>
<thead>
<tr>
<th>Liquid Type</th>
<th>Dispensing data optimized for</th>
<th>50 μL tip: pipetting from</th>
<th>50 μL tip: dispensing from</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol 75%</td>
<td>Mixture of 75% ethanol and 25% water</td>
<td>1 to 3 μL</td>
<td>3 μL</td>
<td>Wash reagent in kits for nucleic acid purification. See applications in ep-Folder Nucleic acid prep. Speed Aspiration: low to medium Speed Dispense: low to high</td>
</tr>
<tr>
<td>Alcohol 98%</td>
<td>Alcohol 98%</td>
<td>1 μL</td>
<td>3 μL</td>
<td>A new tip is prewetted with the liquid for aspirating. Speed Dispense: low Only for multidispense using 300 μL filter tips: very small gap from filter with 300 μL aspiration. To prevent the filter from being wetted, default to pipetting from 280 μL.</td>
</tr>
<tr>
<td>Glycerol</td>
<td>Mixture of 40% glycerin and 60% water</td>
<td>1 μL</td>
<td>5 μL</td>
<td>Glycerin content in many enzyme solutions is much less than this, so Water can also be used as the liquid type here. Speed Aspiration: medium Speed Dispense: medium to high; ZN 300-8:low</td>
</tr>
<tr>
<td>Liquid Type</td>
<td>Dispensing data optimized for</td>
<td>50 μL tip: pipetting from</td>
<td>50 μL tip: dispensing from</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| Protein | Water with 1% albumin (10 g/l), 0.01% Triton X-100 | 5 μL | 5 μL | When using a new tip, prewet it with the liquid to be aspirated before the first dispensing operation. Notice! Curvature of the liquid surface will impair free-jet capability when dispensing into cell culture plates. See ProteinC.
Speed Aspiration: low to medium
Speed Dispense: low to medium |
| ProteinC | As for Protein | As for Protein | As for Protein | ProteinC uses when dispensing higher distance to the calculated plain liquid surface (4 to 5 mm) than Protein. All other data such as Protein. Recommended for nutrient media.
Speed Aspiration: low to medium
Speed Dispense: low to medium |
| Rinse | For demineralized water and water with a low surfactant content; use the mix option or independent MIX command | 1 μL | 3 μL | Like the Water liquid type but with a significantly delayed blowout. Recommended, e.g., in combination with mix to reduce the residual moisture in the tip, but it can also increase the contamination risk regarding smaller containers (e.g., wells in PCR plate).
Speed Aspiration: medium
Speed Dispense: medium |
| Speed_xl | Demineralized water; mixed by means of high dispensing speed | 1 μL | 3 μL | Thorough mixing in a 96-well DWP, for example, with a 750 μL sample and 750 μL dispense. Caution! Higher risk of contamination, especially with small tubes, because of high dispensing speed!
Speed Aspiration: medium
Speed Dispense: medium to high |
| Speed_xs | Demineralized water; very low aspiration speed to avoid stirring up sediment | 1 μL | 3 μL | E.g., for slow aspiration from filter plates.
Speed Aspiration: very low
Speed Dispense: medium |
| Water | Demineralized water | 1 μL | 3 μL | Technical data relating to systematic and random measuring deviation was determined using this liquid type. Recommended for most methods.
Speed Aspiration: medium
Speed Dispense: medium |
Change parameters of the liquid type

The first time the display is called up, the standard parameters specified in the software for the previously-selected liquid type, the previously-entered volume and the previously selected dispensing type are displayed. This is indicated by default in the top right of the display. In the event of changes, the display changes from default to changed. The liquid type can be reset to the default parameters at any time with the Set Default button.

The variation of Movement Blow, Speed Blow and Delay Blow serves to optimize the dispensing of remaining liquid.
Tab. 4: Liquid Type Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input range</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Aspiration</td>
<td>0.2 to 110 mm/sec</td>
<td>In the case of viscous solutions and relatively large aspiration volumes, Speed aspiration should be increased only moderately so that the delayed aspiration of liquid can be completed before the z movement of the carrier. Low values are meaningful for phase separations, for example, or to avoid stirring up sediments or particles.</td>
</tr>
<tr>
<td>Speed Dispense</td>
<td>0.2 to 110 mm/sec</td>
<td>Especially when dispensing relatively large volumes into an empty tube, the risk of liquid splashing back can be reduced by lower Speed Dispense values. At higher values, be aware of the increased risk of contamination from the liquid splashing out. Higher values are meaningful, for example, when dispensing into a relatively large tube to achieve more thorough mixing.</td>
</tr>
<tr>
<td>Delay Blow</td>
<td>0 to 99990 msec</td>
<td>With liquids which have higher wetting properties and consequently delayed draining characteristics, we recommend increasing Delay Blow. The time can be set to zero for liquids which do not wet very much. Increasing Delay blow means that the method takes longer.</td>
</tr>
<tr>
<td>Speed Blow</td>
<td>0.2 to 110 mm/sec</td>
<td>The term Blow is used to describe the blow-out like with a manual pipette. At lower values for Speed Blow, bubbles may form at the outlet opening of the pipette tip in liquids with low surface tension.</td>
</tr>
<tr>
<td>Movement Blow</td>
<td>0 to 100%</td>
<td>Extent of piston stroke in the blow-out step. This is slightly different depending on dispensing tool. Speed Blow and Movement Blow can be varied with the objective of reducing the splashback of the liquid to be dispensed or the liquid already in the tube.</td>
</tr>
<tr>
<td>Initial Stroke</td>
<td>0 to 100%</td>
<td>Extent of piston when blowing out air after completed absorption of liquid. With changes of Initial Stroke the tips are changed automatically due to technical reasons.</td>
</tr>
<tr>
<td>Prewetting</td>
<td>0 to 9 cycles</td>
<td>Prewetting is carried out only with a new unused tip in order to create the same conditions for the first and for subsequent dispensing steps. It is recommended for liquids with a low vapor pressure to enrich the air space in the dispensing tool with evaporated liquid to a comparable extent in all cases. It is also recommended for liquids with reduced surface tension and consequently delayed draining properties so as to achieve comparable prewetting of the tip with solution for all dispensing steps. Prewetting (1 cycle) is preset with the liquid types Alcohol 98%, Protein and ProteinC.</td>
</tr>
</tbody>
</table>

- **Hint!** If the optimal setting of Initial Stroke is changed, it may lead to cross contamination.
- **Hint!** Changes in the liquid types are carried out at one’s own responsibility and can possibly lead to a deterioration of the dispensing results. Please check the setting regarding the dispensing accuracy for each application.

The speed of liquid aspiration, liquid dispensing, drawing up and blow-out are optimized for the liquid in question in each liquid type in order to achieve low-contamination dispensing up to the working volume of the tubes. With critical liquids, start checking with demineralized water. If this is successful, repeat the test with the liquid actually envisaged.
The following must be confirmed in the check:

- Adequate precision and accuracy are still achieved.
- No liquid splashes out (probability of contamination remains unchanged at low).

Abb. 46: Aspirate, dispense and blow

<table>
<thead>
<tr>
<th>A Aspirate</th>
<th>B Dispense</th>
</tr>
</thead>
<tbody>
<tr>
<td>To aspirate a sample, the piston moves upward from the home position.</td>
<td>Multidispense: return to default position by means of short individual steps. Pipette: total path in one step.</td>
</tr>
</tbody>
</table>

C Blow
Remaining liquid is discarded by means of blow-out.

13.1.3 Reagent Transfer

A reagent is transferred from a source labware location to several destination labware locations. Reagent Transfer is best suited to transferring a reagent to several plates.

Fig. 47: Reagent Transfer principle

In Reagent Transfer the entry for Number of Samples relates to the destination vessel. All other entries and selection options are comparable to those of Sample Transfer.

In Reagent Transfer several source vessel locations with liquid might be present.

ID tracking does not take place with the Reagent Transfer command. If the source vessel labware is provided with IDs, these IDs are only recorded in the log.
Special case: use of several sources

For Reagent Transfer you can define methods in which more than one tube is defined as source vessel. The software can access the next tube automatically after the first tube has been emptied, to fill the destination labware for example. You no longer have to fill the first tube completely.

If the optical sensor is switched on, the first source vessel is scanned. If, during this process, the software detects that there is too little liquid for the number of samples, the Checkrun window will appear. The minimum volume, maximum volume and calculated volume are displayed. You can now select how the optical sensor is to proceed (continue, abort, etc.).

To incorporate the next tube in the calculation, select accept level and continue. The optical sensor continues by scanning the next tubes. The volumes determined are totaled and the method started when the volume is adequate.

The optical sensor also detects empty tubes that have been defined as source vessels in the pattern. The message appears with a Calculated volume of 0 μL. Confirm with Accept level and continue to scan the subsequent tubes.

If the level detection is switched off, a request for entering the volume appears for the source vessel locations of the pattern. The total volume required is assigned only to the first tube in the entry list. For all other source vessel locations the left-hand column contains “1”. The “1” serves as a reminder to assign the individual volumes to the tubes.

13.1.4 Dilute

Dilute facilitates the creation of dilution series. A defined volume is transported from well to well by means of pipetting. Before the Dilute command diluent (diluent reagent) must be dispensed using a Reagent Transfers. The Reagent Transfer command fills the wells with the diluent required. Dilute can be executed using a source plate (undiluted samples) and a destination labware (dilution steps).

Fig. 48: Dilute command principle (destination vessel plate)

The Number of Samples command before Dilute defines the numbers of samples to be diluted. The dilution steps are defined in the pattern and only possible within one location. They are limited by a row or a column.

If the Dilute command is executed within a single plate, the source and destination vessel areas on the plate must not overlap. This can be achieved by limiting the number of samples with the Number of Samples command.
Example dilution series

This example explains the principle of a dilution series. This is not a concrete application.

Sequence and objective of a dilution series

- 24 samples are in a rack with 24 vessels and should be diluted 1:1000.
- Dilution takes place in 3 stages with 1:10 dilutions in each case.

 To achieve this, the 24 samples are transferred to a 96-well plate.

Diluent is transferred from a 300 mL reservoir to the 96-well plate.

Work is performed first with a single-channel dispensing tool and then later, to speed up the process, with an eight-channel dispensing tool.

Method

First samples and then diluent should be transferred to the 96-well MTP. The dilutions are performed in the MTP 96.

In the **Sample Transfer** command, 200 μL of sample are respectively put in the micro test plate.

The pattern for the 24 samples in the destination vessel looks as follows:
In the **Reagent Transfer** command the empty wells of the micro test plate are filled with 225 μL of diluent. From this point on, an eight-channel dispensing tool executes the task.

The pattern of the destination vessel looks as follows:

In the **Dilute** command 25 μL of sample (A-1) is aspirated and mixed with the 225 μL of diluent (e.g., A-2). This is performed three consecutive times (A-3 and A-4). These three dilutions (1:10) lead to a 1:1000 dilution (MTP columns 4, 8 and 12).

Calling up **Show Process** in the **Dilute** command must show the following pattern for Dilute:
In this example, each dilution step is a 1:10 dilution. The desired dilution of 1:1000 is achieved using the third 1:10 dilution. The volume aspirated from the undiluted sample also applies for the dilution steps.

13.1.5 Pool

With the Pool command you combine liquids from several wells as well as different source vessel locations.

Because with *multiaspirate* following each sample aspiration a drawing-up of the liquid in the tip occurs, the aspirated liquid segments are in the beginning separated by air bubbles. With a filled tip the content is dispensed into the destination vessel. Which locations of the source are pooled for one location each of the destination vessel is defined in the pattern.

The Pool command automatically carries out an ID tracking (transfer of IDs to the destination labware) when the source labware is provided with IDs.

Define pattern

The pattern for the Pool command differs slightly from the pattern for other transfer commands. The following steps briefly describe the special features of the Pool command.

1. In the parameter window of the command click on the *Pattern* button.
2. In the pattern window click on the source locations from which the liquid is to be pooled in the desired order.
3. In the destination vessel plate click on the location where the pooled liquid is to be dispensed.
4. In the source click on the next sequence of locations from where the liquid is to be pooled.
5. In the destination click on the next location where the pooled liquid is to be dispensed.

6. As soon as the pattern is identified, confirm with the *Ok* key.
Options

Change tips

• before asp. for next destination, well ...

Is the default setting. Tips are only changed when the next pool has been assembled for the next destination location.

All other entries and selection options are comparable to those of Sample Transfer.

Enter Number of Samples for Pool

The entry of the Number of Samples relates to the source vessel. The number of samples divided by “Number of Samples per Destination” gives the number of destination locations. If a decimal place results from the division, the number is rounded up for destination locations. The pattern in the source is also executed completely for the last destination location. In the Pool pattern, a maximum of the samples occurring in a row or column can be pooled.

Example: the samples of each column of a 96-well plate are to be pooled in a destination vessel. In other words, 8 samples are always put into a tube.

• Number of Samples entry at start: 48
 48 : 8 = 6
 6 destination vessels are filled.

• Number of Samples entry at start: 50
 50 : 8 = 6.25
 7 destination vessels are filled.

The command is executed in the source up to location 56 inclusive (prerequisite: no limit in the Number of Samples command).

13.1.6 Pool One destination

With the PoolOneDest command you dispense the liquids from several source vessel locations into one destination vessel location.

The Number of Samples entry determines the number of locations in which aspiration will be performed. There is only one location as destination vessel.

With the multiaspirate transfer type, the liquid is drawn up in the tip following every dispensing step. The same criteria apply here as to the Pool command.
Define pattern

The pattern for the Pool One Destination command differs slightly from the pattern for other transfer commands. The following steps briefly describe the special features for the Pool One Destination command. In the pattern the locations are defined for the source vessel where aspiration is to take place and the direction of the aspiration steps. Next the destination vessel is only selected once.

1. In the parameter window of the command click on the **Pattern** button.
2. In the pattern window click on the first and the second source vessel location to define the direction for pooling the liquid.
3. In the destination vessel plate click on the location where the pooled liquid is to be dispensed.
4. As soon as the pattern is identified, confirm with the **Ok** key.

Options

Change tips

- **Change tips**
 - **... when command is finished**
 - Is the default setting. The tips are not ejected until the command is finished.
 - All other settings are comparable with Sample Transfer.
13.1.7 Mix

Use this command to mix liquids within a location.

The entire mixing process takes place in the liquid. When the liquid is aspirated and dispensed, the dispensing tool is moved on accordingly in the z direction. A mixing cycle consists of an upward and a downward movement. The travel results from the selected volume.

Use only 50 µL tips for mixing in 384-well plates!

The descriptions of the mixing process for Sample Transfer (see Mix on p. 224) also apply to this stand-alone Mix command.

Recommended mixing speeds (Speed)

Enter the mixing speed in the **Speed** window. The speed range is between 0.2 and 110 mm/sec. As long as there is no entry in the input field for Speed, this field always displays the aspiration speed of the selected liquid type. The speeds in the Liquid Type parameters are optimized for pipetting or multidispensing in combination with the selected dispensing tool and the selected volume.

<table>
<thead>
<tr>
<th>Dispensing tool</th>
<th>Recommended lower volume range (mm/sec)</th>
<th>Recommended medium volume range (mm/sec)</th>
<th>Recommended high volume range (mm/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS 50</td>
<td>15 - 88</td>
<td>15 - 44</td>
<td>10 - 40</td>
</tr>
<tr>
<td>TM 50-8</td>
<td>15 - 88</td>
<td>15 - 44</td>
<td>10 - 40</td>
</tr>
<tr>
<td>TS 300</td>
<td>5 - 15</td>
<td>6 - 16</td>
<td>6 - 16</td>
</tr>
<tr>
<td>TM 300-8</td>
<td>2 - 11</td>
<td>2 - 11</td>
<td>2 - 11</td>
</tr>
<tr>
<td>TS 1000</td>
<td>4 - 15</td>
<td>4 - 15</td>
<td>4 - 15</td>
</tr>
<tr>
<td>TM 1000-8</td>
<td>4 - 15</td>
<td>4 - 15</td>
<td>4 - 15</td>
</tr>
</tbody>
</table>

The optimum mixing speed should be determined in trials. Increase mixing speed carefully during these trials. Use very high speeds only for correspondingly viscous solutions.

At very high speeds, large volumes and multiple mixing cycles, liquid may get into the dispensing tool (e.g., foam formation). In this case, perform run tests using demineralized water. The use of pipette tips with filter will increase reliability.
Mixing volume

The mixing volume must always be less than the current filling volume in the tube, as the remaining volume of the aspiration cannot be used for mixing.

You can have the remaining volume displayed in the Labware properties. In the case of very large tubes (e.g., 15 mL) larger remaining volumes result with the 50 μL and 300 μL tips in combination with the geometry of the dispensing tool than with the 1000 μL tips.

Mixing functions at Fixed Height

With Fixed Height a mixing process with a defined aspirating height and dispensing height can be determined.

Fixed Height should only be used for filling levels below the filling volume. At larger filling volumes, depending on the immersion depth selected, liquid may be forced out of the tube or well.

Enter the distance from the bottom of the tube in mm as the height.

Asp. stands for the distance of the pipette tip to the bottom of the tube when aspirating, Disp. stands for the distance of the pipette tip to the bottom of the tube when dispensing.

If you enter 0 mm in the Asp. field a correction of approx. ca. 2 mm upwards occurs after the execution. The correction depends on tube type and the tolerances of the tube type.

If you choose for Disp. a height which lies above the tube the dispensing is reduced automatically to the height of the tube.

If you select a height for Disp., which is below that of Asp., Disp. is raised to a height of Asp. on execution.
13.1.8 Transport

This command uses the gripper to transport labware from one location to another or to the vacuum unit (epMotion 5075 VAC).

![Transport Command](image)

In the parameter settings for the transport command, you select from lists the labware to be transported and the destination location.

The Vac Frame can be transported with the filter plate attached. Tips, racks, thermoadapters and height adapters cannot be transported. Semi-skirted and unskirted PCR plates can only be transported in the form of a thermoblock.

If the gripper is used, location B0 may only be occupied by a
- 300 mL or 400 mL reservoir,
- CycleLock or
- Height adapter

13.1.9 Temperature (only epMotion 5075 with thermal module)

The Temperature command is used to specify the temperature of a thermal module. The command can only be used on an epMotion equipped with thermal modules. If several thermal modules are available on the epMotion, you will have to make the appropriate selection. For temperature control you can select a temperature between 0°C and 110°C. The current temperature of the thermal modules is displayed in the Functions tab.

![Temperature Command](image)

1. From the Location list select the thermal module for which you want to set the temperature.
2. Then mark Temperature On.
If **Temperature On** is deactivated, the thermal module is not temperature controlled or a previously temperature-controlled thermal module is switched off.

If **Hold Temperature** is activated, the thermal module is also temperature-controlled outside a method. This function can also be used for pre-heating a thermal module for a subsequent method. You can switch off a thermal module being heated beyond a method with **Hold Temperature** by executing a temperature command with **Temperature On**.

Temperature control is switched off after shutdown.

13.1.10 Thermomixer (only epMotion 5075 with thermomixer)

With the Thermomixer command you can specify the mixing parameters and the temperature of the thermomixer. The command can only be used on an epMotion equipped with thermal modules. For mixing you can set a maximum rotational speed of 2000 rpm and a temperature of 4°C to 95°C can be set for temperature-control.

1. For some mixing tasks, optimized Templates are available which you can select from the list if necessary. This selection is optional. You can change the Templates as you wish and also use Save to create your own templates which then also are available for selection in the list. In the labware file window under TMX you can delete your own templates or deselect them in order to hide them in the list (see Deleting a labware combination on p. 60).

2. Activate the **Speed on** function if you want to mix. Then you can enter the rotational speed (Speed) and the time (Time). You can enter a rotational speed between 300-2000 rpm and a time between 30 s and 120 min.

3. Activate the **Temperature on** function if you want to temperature control the thermomixer. Then you can enter a Temperature between 4°C and 95°C.

 If you want that the temperature is maintained during the method, activate the keep temperature after method run function. This function can also be used for preheating the thermomixers for a subsequent method. If the thermomixer is heated with keep temperature after method run beyond a method, you can switch it off by executing a thermomixer command with the function Temperature On disabled.

Temperature control is switched off after shutdown.

Hint!

The lowest temperature reached by the thermomixer depends on the ambient temperature and can be a maximum 15°C below room temperature. With a room temperature of, for example 20°C, the lowest temperature reached by the thermomixer are 5°C.

Hint!

Not the liquid level in your tube in relation to the desired rotational speed in order to avoid cross contamination and splashing of liquids. Do not mix with high rotational speed in combination with high liquid level.
13.1.11 Vacuum (only epMotion 5075 VAC)

This command can only be executed on the epMotion VAC.

Use the Vacuum command to set the vacuum in the vacuum unit. To enable you to define the parameters for the Vacuum command in full, a Vac Frame and a Vac Lid must have been defined for the worktable.

The required vacuum (maximum 850 mbar/85 kPa) is set using Vacuum Pressure. You can select between the units of pressure mbar and kPa.

The Vacuum Time can be up to 99 minutes and 59 seconds.

To transport the Vac Lid at the beginning of the command by the gripper from the location T0 to the filter plate in the vacuum unit, activate Use vacuum lid checkbox. After the Vacuum time, at a residual vacuum of 100 mbar or 10 kPa, the Vac Lid is taken off again by the gripper and taken to location T0.

Check Levels causes the scanning of all wells of a filter plate to detect any remaining volume. In this case, apply a vacuum again if required. With plates, Check levels can take a relatively long time.

The Vacuum command automatically carries out an ID tracking (transfer of IDs to the destination labware) when the source labware is provided with IDs.
13.1.12 Wait

Use the Wait command to insert a pause in the method, e.g., to take account of temperature-control periods between two additions of reagent. The duration of the pause is specified in the parameter settings.

The following applies only to epMotion systems with thermal modules:

If *Wait for Temperature* is selected, a selection list appears from which the relevant thermal module (TEMP1 to TEMP3) can be selected. In addition, the following command is executed only once the specified temperature for the thermal module has been reached. The *Wait Time* only starts after the preset temperature has been reached on the defined thermal module.

13.1.13 Comment

Use the Comment command to display a comment at a certain point during execution of the method.

The comment command entered is shown marked as a command line during the method run, no separate window is displayed.
13.1.14 User Intervention

Use this command to interrupt a method, for example to perform manual steps.

If there is to be an alarm immediately before the manual intervention, mark the Alarm field. Enter a corresponding comment on the intervention in the Comment field.

For methods with external steps which lead to a change in volume, divide these into 2 methods. The following things must not happen at all with User Intervention:

- Change in position of carrier.
- Exchange of dispensing tools in locations T1 – T4.
- Positioning of labware which is not known to the method.
- Labware which is removed and then replaced may not be changed externally in terms of volume.
- Distance from labware required in the method. The waste container can be emptied in conjunction with this command. Then position the waste container correctly again.

13.2 Importing commands from a CSV file

When working with biological material (e.g., protein solutions, nucleic acid solutions), it may be necessary to transfer defined quantities of different samples from various parent solutions to a target container in order to adjust the concentration (thus creating standards). The quantities of sample material that must be transferred can be determined by physical measurements (e.g., by using spectroscopic methods, enzymatic analysis, or chemical methods), and the resulting quantities can then be listed in a table.

Using the menu function Edit - Import from CSV you can import a table in CSV format defining the volumes of sample material to be transferred from locations of a source tube to selected locations of a destination tube.

The imported table is converted into a sequence of Sample Transfer commands. With every imported Sample Transfer command the liquid of a specific source location is transferred to a specific destination location. The automatic pattern detection is not active for this command.

You can create and edit tables in CSV format using an editor or a spreadsheet. By importing a procedure from a file you can reuse the same sequence of commands in different methods by simply importing the sequence again from the same source file.

At the top of the CSV file allocate names and barcode ID lists to the labware if required. From line 7 you can allocate the IDs to the individual steps and save them.
13.2.1 Creating a CSV file for import

A CSV file is an ASCII text file defining the structure and content of a table. Each line of text in the CSV describes a row in the table. The content of the cells in each table row are separated by commas, semicolons or tab keys. You can create and edit a CSV with any simple ASCII text editor (e.g., Windows Notepad) or a spreadsheet (e.g., Microsoft Excel). The format of the CSV file has changed compared to epBlue Version 10.x.

If you use Microsoft Excel to create or edit a CSV file for import, make sure that the default separator for lists is not identical to the decimal point. I.e. in the Regional Settings for “English” in the Windows Control Panel the default separator for lists is a comma, so you cannot use the comma as a decimal point. Save your edited table in CSV format before exiting Excel (you do not need to save it also as an Excel file).

To create a CSV file make sure that the following prerequisites are met.

1. If you create your table in a spreadsheet and then export it to the CSV format make sure that the original spreadsheet file only contains one sheet, because only one sheet with table data can be exported to a CSV file.

2. Every Transfer command must be defined in a separate line. The values must always be sorted as follows: The first line contains Rack, Source Barcode, Source List Name, Destination Barcode and Destination Name. The names can also be abbreviated and also apply to plates. Rack 1-4 must be specified. In row 7 you enter Barcode-ID, Rack (Source rack), Source (Source location), Rack (Destination rack), Destination (Destination location), Volume (Transfer volume in μL), Tool (dispensing tool) and Name (Sample name). The values in every line must be separated by commas, semicolons or tab keys. For decimal figures the decimal point or comma can be used. Make sure that the separator for lists is not identical to the decimal point. If you do not use barcodes the respective columns can be left without a value.

Even if you do not use barcodes the 1st and 7th row must be completed as described above. Each row must contain exactly 7 separators even if optional columns (e.g., barcode ID, name) are to remain empty.

To illustrate the required file structure the first table rows of a CSV file are shown in the example below the way they appear in the spreadsheet:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rack</td>
<td>Source Barcode</td>
<td>Source List Name</td>
<td>Dest Barcode</td>
<td>Dest List Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4711 Hamburg</td>
<td>4712 Köln</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>815 Berlin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>911 Dresden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Barcode ID</td>
<td>Rack</td>
<td>Source</td>
<td>Rack</td>
<td>Destination</td>
<td>Volume</td>
<td>Tool</td>
<td>Name</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>A1</td>
<td>1A1</td>
<td>1A2</td>
<td>1</td>
<td>1 Sample 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>A2</td>
<td>1A2</td>
<td>1A3</td>
<td>1</td>
<td>1 Sample 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>A4</td>
<td>1A4</td>
<td>2</td>
<td>1</td>
<td>1 Sample 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>A1</td>
<td>1A5</td>
<td>2</td>
<td>1</td>
<td>1 Sample 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>A2</td>
<td>1A5</td>
<td>2</td>
<td>1</td>
<td>1 Sample 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>A1</td>
<td>1A2</td>
<td>2</td>
<td>1</td>
<td>1 Sample 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In comparison the same CSV file is shown here as it appears in an ASCII text editor:
13.2.2 Importing a CSV file

Proceed as follows to import a sequence of Sample Transfer commands from a CSV file.

| Barcode ID; Rack; Source; Rack; Destination; Volume; Tool; Name |
|---------------|-------------|-------------|-------------|---------------|-------|
| 1; A1; 1; A1; 1; Sample 1 |
| 1; A2; 1; A2; 1; Sample 2 |
| 1; A3; 1; A3; 1; Sample 3 |
| 1; A4; 1; A4; 2; Sample 4 |
| 2; A1; 1; A5; 2; Sample 5 |
| 2; A2; 1; A6; 2; Sample 6 |
| 3; A1; 1; A7; 2; Sample 7 |

3. The values in the 6 rows of the CSV file must start in the second line of the file and then continue uninterrupted. No further entries must be made under these values because these would be interpreted as a command during import and cause errors.

4. If a line starts with "#", it is interpreted as a comment and not imported.

5. A maximum of 500 Transfer commands can be imported from a CSV file into a method.

6. The number of racks specified in the CSV file as source and definition locations must match the number of racks defined in the first Sample Transfer command added manually to the method prior to importing the file. A maximum of 4 source locations and 4 destination locations can be used on the worktable. The exact source and destination locations on each plate can be entered as figures (1, 2, 3, etc.) or as alphanumerical coordinates on the plate (A1, B5, A3, etc.)

7. The tool numbers in the CSV file must match the dispensing tools as follows:
 - 1 - TS_50
 - 2 - TS_300
 - 3 - TS_1000

TM dispensing tools cannot be used. It is recommended to avoid frequent dispensing tool changes within a method.

i Tip: Make sure that the CSV file meets the requirements for import.
3. As a second step add a Sample Transfer command in the procedure (see Adding a command to the program on p. 74).

The first Sample Transfer command and its source and destination locations on the worktable serve as master configuration for the complete sequence of the commands imported from the CSV file. Only the source and destination locations defined manually in this first Sample Transfer command will be available during the sequence of the imported command.

4. Define the source and destination locations for the Sample Transfer command (see Define the source vessel (Source) and destination vessel (Destination) for a transfer on p. 77). The following example shows a Sample Transfer command with 2 source locations and 2 destination locations. These locations are available for the imported command sequence.

The number of racks specified in the CSV file as source and destination locations must match the number of racks defined with the first Sample Transfer command. A maximum of 4 source locations and 4 destination locations can be defined. The rack locations are then used in the order in which they appear in the parameter area of the first Sample Transfer command. I.e. if source rack 2 is specified in the file, the second rack in the list of source locations is used as source rack for the step.

5. In the Options and Mix tabs in the parameter area of the Sample Transfer command define the options and mixing configurations you want to use for the sequence of the imported commands. The options and mixing configurations manually defined for the first Sample Transfer command are copied and used for all imported commands. The "Elution from filter" option is not available for imported commands.
6. Check the parameter settings for the first Sample Transfer command and ensure that they meet the requirements for the complete sequence of commands. Please pay particular attention to the mixing volume and the mixing speeds, because these settings must be suitable for all imported commands. The preset value for the mixing speed must be overwritten manually with a different value. If you want to use different dispensing tools (including TS_300), a mixing speed of 11 mm/sec is recommended.

7. To import the command sequence from the file click on the Sample Transfer command in the program list to make sure it has been selected.

8. In the main menu select Edit - Import from CSV.
9. Select the CSV file you want to import and click on Open.

The CSV file is imported. Every line defined in the CSV file is added to the procedure as a Sample Transfer command with the settings defined in the file for source, destination, volume and tool. The imported command sequence is displayed in the program list.

A maximum of 500 Transfer commands can be imported from a CSV file into a method.
13.3 Importing and exporting labware combinations

13.3.1 Importing labware combinations

1. In the start menu under File select the item Import Labware.
 The following window opens:

2. Add the labware to be imported to the list via Add and the following folder selection. Use Remove to delete individual files. Click on Clear to delete all files simultaneously.

3. Click on Import.
 The following window opens:

4. The labware (e.g., holder with the complete, added labware) is displayed in a list. Deselect any labware not required or already present, if necessary.

5. Define the import rules. The following are available:
 • Keep existing: Keeps the existing file with the same name.
 • Overwrite older: Older files are overwritten.

6. Click on Import.
 The labware files are imported to eBlue. An import summary appears in a window.

7. Click on Finish to complete the process.
13.3.2 Export labware combinations

1. In the start menu under File, select the Export Labware item.
 The following window opens:

2. Select the Labware Type and the category of the labware to be exported.
3. Select the file to be exported from the list on the right.
4. Click on Export or click on Clear to reset the window to its original state.
5. Select a target folder and click on OK.
6. The labware (e.g., holder with the complete, added labware) is displayed in a list. Deselect any labware not required or already present, if necessary.
7. Click on Export.
 The labware files are exported to the destination folder. The import summary appears in a window.
8. Click on Finish to complete the process.
13.4 Defined applications

The User ep contains four subfolders with several applications for you to copy to your user directory where you can edit or start them.

Applications contained in ep cannot be started or edited there directly.

The defined applications are examples of the following areas:

- Nucleic acid preparation
- PCR setup
- Setup of sequencing reactions
- Routine liquid handling

Complete applications for nucleic acid preparation with kits from various manufacturers can be found on the webpage www.epmotion.com under “Plug’n’prep” in the VIP area.

To better understand the descriptions you should display the contents of an application. Select the application and the information is displayed on the right-hand side of the screen.
14 Appendix C: BIOS password

14.1 Changing the BIOS password

To prevent unauthorized access to the BIOS setup a password can be set up:

1. Switch on the PC.
2. As soon as the BIOS starts press "F2" to open the setup.
3. Use the cursor to go to "security".
4. Use the cursor to go to "set supervisor password" and press Enter.
 The password field opens.
5. Enter and confirm a password.
6. Press F10 to save and exit the BIOS setup.
epMotion® 5075 with integrated PC and epBlue™ — Operating manual

Index

A

Accessories
Item number ...181
Accessories for nucleic acid purification
Item number ...182
Activate labware ...101
Adapter
Labware folder ..207
Thermaadapter Frosty ..202
Add a command to a method ...74
Admin tab ..117
Administrator login ..117
Application files ...49
Application properties ...55
Application Support ...207
Applications
Defined ..249
Aspirate from bottom ...221
Aspiration volume ...27
Autoclaving
CycleLock ...176
Dispensing Tools ..175
Vac Lid ...176
Vacuum unit ...176
Gripper ..175
Thermaadapter, thermoblock, thermorack176
Automated pipetting system
Item number ...181

B

Barcode ID lists ..48
Export ..48
Import ..48
Remove ..49
Barcode reader
Cleaning ..175
BCR ...8
before aspiration for next destination, well223
before each aspiration ..223
Bottom tolerance ...223

C

Carrier
Technical data ...179
Change history ..10
Change liquid type ...225
Change tips ..223
Changing the user password ...124
Channeling plate ..124
Check commands ...82
Check levels ..240
Check the method ...82
Cleaning
Barcode reader ...175
Dispensing Tools ...174
Gripper ...175
Thermaadapter, thermoblock, thermorack175
Thermomixer ...175
Vac Lid ...175
Vacuum unit ...175
Work surface adapter ..174
Worktable ...174
Client connection ...118
Command check ..82
Command icons ..73
Command overview ..73
Command parameters ..76, 82
Command reference list ..82
Commands
Comment ...241
Dilute ...230
Mix ...236
Number of Samples ...216
Pool ...233
Pool One destination ..234
Reagent Transfer ..229
Sample Transfer ..218
Temperature ...238
Thermomixer ...239
Transport ...238
User Intervention ..242
Vacuum ...240
Wait ..241
Comment ...241
Comment command ..89
Connect client ..118
Control method run ..96
Control tab ...96
Copying applications ...54
Create user account ...121
Creating a user account ..122
CycleLock
Autoclaving ...176
Deactivate labware ...101
Debug log ...96
Debug log for method run ..96
Decontamination ...176
Define module rack ...104
Defining the procedure ..72
Delete application ...55
Deleting user accounts ..123
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum command</td>
<td>87</td>
</tr>
<tr>
<td>Vacuum Frames</td>
<td></td>
</tr>
<tr>
<td>Labware folder/</td>
<td>207</td>
</tr>
<tr>
<td>Vacuum time</td>
<td>240</td>
</tr>
<tr>
<td>Vacuum unit</td>
<td>19, 40</td>
</tr>
<tr>
<td>Autoclaving</td>
<td>176</td>
</tr>
<tr>
<td>Cleaning</td>
<td>175</td>
</tr>
<tr>
<td>Technical data</td>
<td>179</td>
</tr>
<tr>
<td>Volume</td>
<td>27</td>
</tr>
<tr>
<td>Aspiration volume</td>
<td>27</td>
</tr>
<tr>
<td>Extra aspiration</td>
<td>27</td>
</tr>
<tr>
<td>Filling volume</td>
<td>25</td>
</tr>
<tr>
<td>Remaining volume</td>
<td>26</td>
</tr>
<tr>
<td>Required volume</td>
<td>28</td>
</tr>
<tr>
<td>Reverse stroke</td>
<td>27</td>
</tr>
<tr>
<td>terms</td>
<td>25</td>
</tr>
<tr>
<td>Working volume</td>
<td>25</td>
</tr>
<tr>
<td>Volume check</td>
<td>28</td>
</tr>
<tr>
<td>Wait</td>
<td>241</td>
</tr>
<tr>
<td>Wait command</td>
<td>89</td>
</tr>
<tr>
<td>when command is finished</td>
<td>223</td>
</tr>
<tr>
<td>Work surface adapter</td>
<td></td>
</tr>
<tr>
<td>Cleaning</td>
<td>174</td>
</tr>
<tr>
<td>Work tab</td>
<td>61</td>
</tr>
<tr>
<td>Working volume</td>
<td>25</td>
</tr>
<tr>
<td>Worktable</td>
<td></td>
</tr>
<tr>
<td>Cleaning</td>
<td>174</td>
</tr>
<tr>
<td>Locations</td>
<td>14</td>
</tr>
<tr>
<td>Placing the gripper</td>
<td>39</td>
</tr>
<tr>
<td>Position labware</td>
<td>38</td>
</tr>
<tr>
<td>Worktable tab</td>
<td>66</td>
</tr>
</tbody>
</table>
EG-Konformitätserklärung
EC Conformity Declaration

The product named below fulfills the relevant fundamental requirements of the EC directives and standards listed. In the case of unauthorized modifications to the product or an unintended use this declaration becomes invalid.

Produktbezeichnung, Product name:

epMotion® 5075 mit integriertem PC / epMotion® 5075 with integrated PC
alle Gerätevarianten / all device alternatives: LH, VAC, MC, TMX
einschließlich Zubehör / including accessories

Produkttyp, Product type:

Automatisches Pipettiersystem / automated pipetting system

Einschlägige EG-Richtlinien/Normen, Relevant EC directives/standards:

2006/95/EG, EN 61010-1, EN 61010-2-010, EN 61010-2-051, EN 61010-2-81

2004/108/EG, EN 55011/B, EN 61000-6-1, EN 61000-3-2/3, EN 61326-2-6

EN ISO 8655-1/-2/-6

Vorstand, Board of Management:

25.02.2011

Hamburg, Date:

Projektleitung, Project Management:

Eppendorf AG - Barkhausenweg 1 - 22339 Hamburg - Germany