

Getting the Most Out of Your PCR

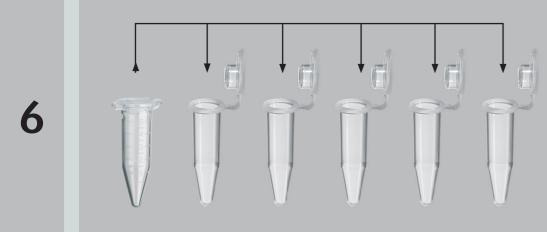
A best practice and optimization guide

Your PCR workflow ... **DNA** Concentration **DNA** concentration Measure your DNA (gDNA/ cDNA) for concentration and purity. Ideal DNA purity range $(A_{260}/A_{280}) = \sim 1.7 - 2.0$ **Calculate concentration** $M_1V_1 = M_2V_2$ Calculate according to desired reaction volume. Stock **Final Final** concentration volume concentration volume

3

Mastermix

Prepare a mastermix of all common components in 1 tube. Remember to always use suitable controls (positive, negative, no template, etc.).


Mix

Mix well to ensure homogeneous distribution of components to minimize well-to-well variation.

(See Eppendorf Application Note 130 for best mixing guide.)

Briefly spin down (short-spin)

Short spin can reduce contamination by pulling down the liquid from the rim of the tube.

Distribute mastermix

Hold pipette vertically during pipetting. Always dispense to the bottom of the tube.

> Set cycler modes to match reaction volume (fast, standard, safe) for optimal heat transfer

- > **Denaturation**: temperature depends on enzyme; holding time depends on enzyme, DNA source and GC content
- > **Annealing**: temperature generally ~5-10°C below primer melting temperature. Long holding time not necessary. > Extension: optimal temperature for polymerase activity
- (e.g. Taq = 72° C. Incorporation rate of Taq: ~1000 bases/ min).

... and tips & tricks for some steps

- > Take note of the absorbance reading (not just concentration values). Aim for 0.1 - 1.0 A for reliable reading according to the Beer-Lambert Law.
 - > Aliquot stock solutions to prevent multiple freeze-thawing events that can affect reproducibility of PCR.
 - > Smaller reaction volume saves reagents and costs, but when working in small volumes it is important to protect against evaporation during PCR.
 - > Use low retention tips or low binding tubes to minimize sample and reagent loss.
 - > Prepare each mastermix in a single tube to prevent pipetting variation
 - > Use bigger tube sizes when preparing mastermixes: (e.g. 1×5 mL tube is better than 2×2 mL tubes).

Use PCR clean consumables that are certified:

- > Human DNA-free
- > DNase-free
- > RNase-free
- > Free of PCR inhibitors

- > Use a dedicated set of pipettes for PCR.
- > Use the appropriate tips for the pipettes.
- > Calibrate the pipettes at least once a year to ensure accuracy and precision.
- > Prevent aerosol contamination by using either positive displacement pipette or filtered tips.

Always take note of ramp rates when:

- > Transferring protocols between different cyclers.
- > Transferring from optimization protocol to standard protocol.
- > Set cycler temperature modes to match reaction volume (e.g. safe, fast, standard in Eppendorf cyclers).

Troubleshooting your PCR

Problems	Possible solutions
1. Non-specific amplifications	 Use Hot-start strategies: a) Manual hot-start b) Use devices with thermal sample protection (TSP) lid c) Use devices with "Impulse PCR" function d) Use hot-start reagents For new primers, run optimization with single-primer (e.g. forward primer only) controls to determine non-specificity Alternative strategies: a) Mg2+ titration (concentration optimization) b) Touchdown PCR
2. No / low amplifications	 Optimize denaturation and/or annealing temperature with gradient function Use PCR enhancers (e.g. DMSO, BSA). These require empirical testing for each combination of template and primer