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Abstract

Biomass concentration is a key process variable, which 
is used to identify trends and initiate process events in 
microbial bioprocesses. Real-time data on the biomass 
is essential to implement advanced control strategies, 
including the control of biomass-specific nutrient uptake 
rates.
 

 

Christoph Herwig’s group at Technische Universität 
Wien (TU Wien) has developed a biomass soft sensor 
based on readily available measurements and process 
parameters. They used the soft sensor to control 
various substrate uptake rates in parallel small-scale 
bioreactors. 

Introduction

In developing a bioprocess, researchers incur significant 
costs to determine the optimal culture conditions and install 
the process control technology to maintain them [1, 2, 3]. 
They routinely monitor and control the temperature, pH, 
and availability of oxygen in the culture, but these are not 
the only relevant process parameters. A time-resolved 
determination of the biomass concentration is also of great 
importance, enabling them to not only monitor cell growth, 
but also to establish an optimal supply of substances, like 
nutrients, co-factors, and inducers. The demand for them 
changes over time as the culture grows. To manage the 
availability of nutrients we must know how much of them 
is consumed. The nutrient supply can be described by the 
biomass-specific nutrient uptake rate at a given point in time 
(qs(t)) (Box 1). 

There are several methods to determine the biomass 
concentration in a microbial bioprocess. The choice of the  

 
 
best method for high-cell-density fermentations  
depends strongly on the demands of the application. 
At the production stage, robustness and accuracy are 
the main demands, while cost and transferability are of 
limited concern [4]. Methods based on light scattering 

Fig. 1: In many bioprocesses carbon is metabolized to biomass 
and CO2 by oxidative transformation. Out of known or measured 
amounts of carbon (substrate), O2, and CO2 that are introduced to 
and leave the bioreactor, a soft sensor can calculate the biomass. 
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and transmittance, like optical density measurement, are 
widely used. They are inexpensive and easy to implement, 
but their application range is limited to certain biomass 
concentrations.

Researchers at TU Wien developed a biomass soft sensor 
as an alternative method for biomass determination. The 
term soft sensor combines the words software and sensor. 
The idea behind it is to use easy-to-determine parameters 
to calculate variables that are more difficult to obtain by 
direct measurement. The soft sensor delivers readings like 
a conventional hardware sensor, but uses a mathematical 
model to determine the sensor signal based on other 
measurements [5]. 

The soft sensor for biomass determination described here 
uses mass balancing. It is based on the hypothesis that in 
a bioprocess carbon is metabolized to biomass and CO2 by 
oxidative transformation. This applies to the most industrially 
used bacterial, mammalian, and yeast cell lines. From the 
amount of carbon that goes into the bioreactor (quantified, 
for example, by measuring the amount of substrate that is 
fed in) and leaves the bioreactor (quantified, for example, 
by measuring the CO2 concentration in the exhaust), we 
can estimate the biomass concentration (Fig. 1). Feeds and 
outflows of the bioreactor are quantified using standard 
online measurements, and the software calculates the 
biomass based on a data model. 

This application note describes the successful 
implementation of such a biomass soft sensor in an 
Eppendorf DASbox® Mini Bioreactor System using the 
DASware® control software. The biomass estimate was 

used to evaluate and control the biomass-specific substrate 
uptake rates of different nutrients in high-density E. coli 
fermentations. The combination of the biomass soft sensor 
with an optical density sensor enables full automation of the 
multi-bioreactor system for bacterial processes.

Material and Methods

The project comprised two steps. First, the researchers 
implemented the soft sensor. Then they used it to set up 
control loops to control the biomass-specific uptake rates 
of different substrates in E. coli high-density fermentation 
processes (Fig. 3). For example, they show results on the 
simultaneous control of the biomass-specific uptake rates of 
glucose and lactose. 

Soft sensor implementation

Setup of data model
As the first step of the soft sensor implementation the  

 

Box 1: Biomass-specific nutrient uptake rate qs

A way to describe the substrate consumption of organisms 
is to calculate the biomass-specific nutrient uptake rate at 
a given time point (qs(t)). It indicates how many grams of 
substrate are consumed per gram of biomass per hour. 
The amount of substrate consumed by the culture equals 
the amount of substrate fed in, as long as the nutrients are 
limited and thus are completely taken up by the culture. 
The nutrient supply, and thus the biomass specific substrate 
uptake rate, can be controlled with the feed pump rate 
[9]. To calculate qs(t) the biomass concentration must be 
measured.

qs
(t)
 = 

x
(t)
 V

(t) 

F
(t)
 C

s
 

[g/(g*h)]

qs
(t)
: Biomass specific substrate uptake rate [g/g] at time point (t)

F
(t)
: Feed flow rate [L/h] at time (t)

C
s
: Substrate concentration in feed [g/L]

x
(t)
: Cell dry weight concentration [g/L] at time (t)

V
(t)
: Bioreactor volume [L] at time (t)

Fig. 2: Stoichiometric matrix of the considered system where E 
is the stoichiometric matrix, X contains the reaction rates and ε 
the residuals which in a perfect system are 0. Both the material 
balances of carbon (C balance) and free electrons (DoR balance)
can be used to determine missing reaction rates, such as the 
biomass formation rate rx. 
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researchers set up a data model that describes the oxidative  
transformation of carbon to biomass and CO2. The mass  
balance system is depicted in Figure 2. One can solve the 
material balances of carbon and free electrons (C balance 
and DoR balance). The rates of substrate uptake, carbon 
evolution, oxygen uptake, and biomass formation have to be 
estimated [6]. Table 1 summarizes the measurements and 
constants which are used to do so. The substrate uptake rate 
is determined from the pump flow rate. The rates of carbon 

evolution and oxygen uptake are calculated from exhaust 
composition and mass flow. 

The additional system redundancy allows for system 
reconciliation. The residuals ε are assigned to the rates 
according to their measurement error. A statistical test 
(h-value) evaluates the system integrity, which applies if the 
residuals can be explained solely by measurement errors [7].

In this application, the researchers designed the soft 
sensor to work in strictly C-source-limited fed-batches or 

Rate Description Measurement Constant parameter Assumed error

rs [C-mol/h] Substrate uptake rate Pump flow rate [L/h]
C-concentration 

[C-mol/L]
2 %

rCO2 [mol/h] Carbon evolution rate 
(CER)

CO2 and O2 
concentrations (off gas 
analyzer [%] and mass 

flow [sL/h]

In-gas composition, 
evaporation

3 %

rO2
 [mol/h] Oxygen uptake rate 

(OUR)
3 %

rx [C-mol/h] Biomass formation rate
Calculated by soft 

sensor
Elemental composition 

of biomass [g/C-mol]
≈10 %*

Table 1: Needed measurements and constants for rate estimation. 
*error propagation [8]. sL: Standard liter

Aim Control of biomass specific nutrient uptake rate (qs)

Method
Establish a control loop that regulates 

substrate addition dependent on the biomass concentration

Estimate and 
measure elemental 
compositions and 
concentrations

Estimation of rates (r
S
, r

CO2
, r

O2
)

Estimation of biomass formation rate 
and resultant parameters (r

x
, CDW, qs)

Process control

Enter setpoints for qs 
into DASware control 
software

Control 
substrate addition 
by system-integrated
pump

Method

Aim

Determine O
2
 and CO

2
 

concentrations in 
exhaust gas 

Aim

Transfer of rates to soft 
sensor algorithm

Method Soft sensor algorithm

Aim

Transfer of values to 
DASware control software

Online exhaust analytics;
measurement of flow rates

Substrate addition

Method

A

C

B

Fig. 3: Process monitoring and control 
loop for control of the biomass-specific 
nutrient uptake rate. 
A: Rate estimation: The amounts of 
carbon (substrate), O2, and CO2 that are 
introduced to and leave the bioreactor are 
known or measured. From these data the 
substrate uptake rate, carbon evolution 
rate an oxygen uptake rate are calculated.
B: Using these rates the soft sensor 
estimates the biomass  and the biomass-
specific nutrient uptake rate qs. 
C: The setpoint for qs is entered in the 
DASware control software. Using the 
biomass estimate the required amount of 
feed solution to maintain qs at the setpoint 
is pumped into the bioreactor.
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continuous cultures where the product and possible by-
products can be neglected.

Creation and integration of soft sensor algorithm
Once they had established the data model, the researchers 
created the soft sensor algorithm in MATLAB®. They 
incorporated it into the DASware control software through 
a Visual Basic control script that accesses the function. The 
results are stored, and can be visualized directly, within 
the DASware control software (Fig. 4) without the need 
for further customization or the establishment of OPC 
connections. Additional features like automated phase 
transition from batch to fed batch and induction as well as 
control options were included. 

Figure 3 summarizes how the the soft sensor is integrated 
into the bioprocessing environment.

Soft sensor calibration
The bioprocesses were run in two phases. In the initial batch 
phase the cultures grew to a cell dry weight (CDW) of up to 
10 g/L. During this phase, the biomass concentration can 
be measured accurately with optical density sensors. At the 
end of the batch phase, the actual biomass concentration 
measured with the OD sensor was used to start the soft 
sensor.

High-density fermentation

Culture conditions
The researchers conducted the fermentations in a DASbox® 

Mini Bioreactor System (Eppendorf AG, Germany) equipped 
with glass vessels or BioBLU® 0.3f Single-Use Vessels. Both 
vessel types have a maximum working volume of 250 mL.

They used a recombinant E. coli strain, which bears a 
green fluorescent protein (GFP) gene under the control of the 
LAC promoter. The bacteria were cultivated in a chemically 
defined medium with a limited amount of C-source (10 g/L 
glucose). 

After C-source depletion, glucose and inductor (lactose) 
were fed to the culture with a DASGIP® MP8 multi pump 
module (Eppendorf AG, Germany).

The pH was maintained at 7.2 by NH3 addition, which 
served as an additional N-source. Air saturation was kept 
over 30 % by increasing the stirrer speed and oxygen 
concentration in the inflow air, which was supplied with 
2 VVM through an L-sparger. The five M18 ports were 
occupied by pH, DO, and OD sensors (Eppendorf DASGIP 
OD4 Module, 880 nm), gas inlet and gas outlet. Three 
dip tubes were used for feed, base addition, and offline 
sampling.

The exhausted gas was analyzed by a DASGIP GA4 gas 
sensor module (Eppendorf AG, Germany) with a ZrO2 sensor 
for O2 and infrared CO2 sensor technology.

Offline measurements
To determine the cell dry weight (CDW) the researchers 
centrifuged 2 mL of culture broth (4,500 x g, 4°C, 10 min), 
washed the cell pellet with a 0.1 % NaCl solution, and 
subsequently dried it at 105°C for 48 h.

Cell-free samples of the cultivation broth were analyzed 

A

C

B Fig. 4: Soft sensor integration into DASware 
control software. The setpoints of the biomass 
specific substrate uptake rates can be entered 
(A) and the biomass estimates are visualized 
(B) directly in the DASware control software. 
Parameter changes are automatically logged (C). 
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for concentrations of substrates and metabolites using HPLC 
(Agilent Technologies, USA) with a SUPELCOGEL™ C-610 H 
ion exchange column (Sigma-Aldrich, USA) and a refractive-

index detector (Agilent Technologies, USA). The mobile 
phase was 0.1 % H3PO4 with a constant flow rate of 0.5 mL/
min, and the system was run isocratically at 30°C.
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Fig. 6: Setpoints and time courses of qsGlu (solid lines) and 
qsLac (dashed lines) in the four fermentation runs (bioreactor 
A-D). spt: setpoint

Results

To demonstrate the functionality of the system, the 
researchers carried out experiments with a recombinant 
E. coli strain bearing a GFP gene under the control of the 
LAC promoter. They aimed to simultaneously control the 
availability of lactose and glucose, to equilibrate the bacterial 
growth, energy maintenance, and productivity. 

Lactose was used instead of IPTG to induce the GFP 
hosting LAC operon. Lactose is metabolized by the host 
strain, so for continuous protein production it must be 
continuously added to the culture.

The researchers tested different glucose-to-lactose ratios 
in four parallel fermentations. Each fermentation run used 
the same setpoint for the glucose uptake rate qsGlu but varied 
the lactose uptake rate qsLac. To control qs, the biomass 
concentration was estimated online using the soft sensor. 
Based on this data, the pump flow rate was automatically 
adjusted to control the supply of a mixed feed containing 
lactose and glucose. 

 

Figure 5 shows optical density and the soft sensor-based 
biomass concentration estimates of one fermentation. The 
biomass concentration deriving from offline measurements 
(black crosses), OD correlation (blue line) and soft sensor 
(orange line) are depicted. 

The data derived from the biomass soft sensor showed  
good alignment with the reference measurements. The 
biomass soft sensor application achieved an accuracy of 
< 10%, which is within its working range [5]. The soft  
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Fig. 5: Biomass concentration estimates. 
Crosses: Biomass concentration (cell dry weight, CDW) 
deriving from offline measurements. 
Blue line: OD correlation. 
Orange line: Results from soft sensor. 
NRMSE: Normalized root mean square error
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Conclusion

The researchers implemented a relatively simple and 
straightforward method for biomass estimation in a small-
scale parallel bioreactor system. The soft sensor works for 
strictly C-source-limited fed-batch and continuous cultures. 
The researchers used it to simultaneously control the uptake 
rates of a substrate and an inducer. The results obtained are 
fully scalable and applicable in industry without the need for 
expensive additional measuring equipment. Besides manual 
offline sampling and sample volume reduction, the described 
fermentations could run fully automatically.

In bioprocess development, the control of biomass-specific 

 
 
substrate uptake rates is a valuable tool to determine the 
optimal supply of nutrients and/or inducers. 

The Eppendorf bioprocess control software DASware 
control 5 (former version DASGIP control 4.5) offers the 
interface for the integration of soft sensors. The soft sensor 
algorithm and process control strategies are developed by 
the end-user.

sensor overestimated the biomass concentration only at the 
end of the induction phase, because the uptake capacity of 
the cells was overstressed and the substrate accumulated. 
This was more pronounced in experiments with a higher 
lactose supply.

Figure 6 displays the specific glucose and lactose uptake 
rates during induction. The setpoint for qsGlu was kept at 
0.25 g/(g∙h) in all experiments, whereas the one for qsLac was 
varied (0.14/0.75/0.02/0.0052 g/(g∙h)). 

The setpoints were reached. Only at the highest qsLac 
was the uptake capacity of the cells overstressed, causing 

accumulation of the substrate. Evaluation of the uptake  
dynamics showed that high qsLac impeded the glucose 
uptake. Therefore, the qsGlu of Reactor A (grey line) dropped 
significantly. The glucose-to-lactose ratio affected product 
formation and product quality. The induction could be 
controlled by continuous lactose addition, and product 
quality and productivity were improved compared to 
induction with a one shot IPTG addition. The latter led to 
higher inclusion body (inactive product) formation, making 
the cheaper, non-toxic lactose a reasonable alternative to 
IPTG.
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Ordering information
Description Order no. 
DASbox® Mini Bioreactor System for Microbial Applications, max. 25 sL/h gassing
4-fold system 76DX04MB
8-fold system 76DX08MB
16-fold system 76DX16MB
24-fold system 76DX24MB
DASbox® Mini Bioreactor, 2 Rushton-type impellers, 60 – 250 mL, overhead drive 76SR0250ODLS
BioBLU® 0.3f Single-Use Vessel, fermentation, 2 Rushton-type impellers, sterile, 4-pack 78903509
DASGIP® OD4 Monitoring Module for Optical Density Measurement, for 4 vessels, incl. transmitter and cables, 
w/o sensors

76DGOD4

DASbox® MP8 Feeding Module, for 8 feeds, w/o feed lines and reservoir bottles 76DXMP8
DASbox® GA4 Exhaust Analyzing Module, incl. accessories for 4 vessels
O2 1 – 50 %, CO2 0 – 25 % 76DXGA4
O2 0 – 100 %, CO2 0 – 25 % (GA4E) 76DXGA4E
DASware® control, incl. PC, OS, and licenses
for 4-fold DASbox® system 76DXCS4
for 8-fold DASbox® system 76DXCS8
for 16-fold DASbox® system 76DXCS16
for 24-fold DASbox® system 76DXCS24
DASware® control professional, incl. PC, OS, and licenses
for 4-fold DASbox® system 76DXCSP4
for 8-fold DASbox® system 76DXCSP8
for 16-fold DASbox® system 76DXCSP16
for 24-fold DASbox® system 76DXCSP24


