-
- Benchtop Centrifuges
- Floor-Standing Centrifuges
- Refrigerated Centrifuges
- Microcentrífugas
- Centrífugas multiuso
- Centrífugas de alta velocidad
- Ultracentrífugas
- Concentrador
- High-Speed and Ultracentrifugation Consumables
- Accesorios
- Tubos
- Placas
- Gestión de dispositivos
- Gestión de muestras e información
- Productos IVD
Technical terms
Regulations, Laws & Directives
Certifications
Institutions, Organizations and Proprietary Content
Miscellaneous
Q&A
Technical Terms
12 Principles of Green Chemistry
Concretely, the 12 principles of green chemistry, formulated by Anastas and Warner entail the following:
Prevention / Atom Economy / Less Hazardous Synthesis / Designing Safer Chemicals / Safer Solvents and Auxiliaries / Design for Energy Efficiency / Use of Renewable Feedstocks / Reduce Derivatives / Catalysis / Design for Degradation / Real-time Analysis for Pollution Prevention / Inherently Safer Chemistry for Accident Prevention
Leer más
Leer menos
6R
Reduce: Minimizing consumption and waste generation at the source. (E.g., using less tubes, when solvents can be combined or using smaller tubes)
Reuse: Extending the lifespan of products or materials by using them multiple times. (E.g., reusing pipette tips where contamination or carry-over is not possible)
Recycle: Processing materials into new products to reduce waste. (E.g., separating paper and plastic waste in packaging to enable their processing into new products).
Rethink: Encouraging a shift in mindset to prioritize sustainability and reconsider consumption habits. (E.g., rearranging experimental groups to reduce sample size but increase statistical power).
Reject: Avoiding or refusing unnecessary or unsustainable products or practices. (E.g., deciding to use less hazardous chemicals for experiments instead of following common laboratory practices).
Repair: Extending the life of products by fixing or maintaining them, reducing the need for replacements. (E.g., repairing and re-calibrating old pipettes and pipette helper instead of buying anew).
Leer más
Leer menos
Biodegradable
It's important to note that while the term "biodegradable" implies that a substance can decompose in a natural environment, the rate and conditions required for biodegradation can vary significantly depending on the specific material, environmental factors like temperature, moisture, and oxygen availability, as well as the presence of the necessary microorganisms. Keep in mind, bioplastic and biodegradable are two different terms.
Leer más
Leer menos
Biodiversity
Alpha Biodiversity: Refers to biodiversity of a single sample or within a local ecosystem level.
Beta Biodiversity: Concerns the diversity between two communities or ecosystems, comparing those.
Gamma Biodiversity: Focuses on the comparison of multiple or many ecosystems.
Leer más
Leer menos
Carbon Capture Technology
Leer más
Leer menos
Carbon Credits
Leer más
Leer menos
Carbon Emissions
Leer más
Leer menos
Carbon Equivalents
Leer más
Leer menos
Carbon Footprint
Leer más
Leer menos
Carbon Neutral
Leer más
Leer menos
Carbon Neutral Products
Leer más
Leer menos
Carbon Offsetting
Leer más
Leer menos
Carbon Tax
Leer más
Leer menos
Carbon Tracing
Leer más
Leer menos
CFC (Chlorofluorocarbon)
Leer más
Leer menos
Circular Economy
Leer más
Leer menos
Climate Change
Leer más
Leer menos
Cradle-to-gate
Leer más
Leer menos
Cradle-to-grave
Leer más
Leer menos
Decarbonization
Leer más
Leer menos
Downcycling
Leer más
Leer menos
EHS - Environment Health Safety
Leer más
Leer menos
Embodied Carbon
Leer más
Leer menos
Environmental Impact
Leer más
Leer menos
F-gases
Leer más
Leer menos
Fluid Retention
Leer más
Leer menos
Geothermal Power
Leer más
Leer menos
Global Warming Potential (GWP)
Leer más
Leer menos
Grassroots Initiatives
Leer más
Leer menos
Green Chemistry
Leer más
Leer menos
Green Cooling Gases
Leer más
Leer menos
Green Electric Energy
Leer más
Leer menos
Green Officer/Sustainability Officer
Leer más
Leer menos
Hydrofluorocarbons
Leer más
Leer menos
Hydrocarbons
Leer más
Leer menos
Incineration
Leer más
Leer menos
Landfill
Leer más
Leer menos
Life Cycle Analysis (LCA)
Leer más
Leer menos
Ozone Layer
Leer más
Leer menos
Persistent Organic Pollutants (POPs)
Leer más
Leer menos
Plastics & Plastic Waste
Polyethylene Terephthalate (PET):
PET is formed from repeating units of ethylene glycol and terephthalic acid. Ethylene glycol is a diol compound (HO-CH2-CH2-OH), while terephthalic acid contains aromatic rings.PET's molecular structure provides it with excellent strength, clarity, and barrier properties, making it suitable for beverage bottles, food packaging, and synthetic fibers in textiles. Found in the laboratory in: Transparent Medium BottlesRecycling symbol: #1
Polyethylene (PE):
PE consists of repeating ethylene units (CH2=CH2). The difference between HDPE and LDPE lies in their molecular structure and density. HDPE is used in bottles, containers, pipes, and toys due to its toughness and resistance to chemicals. LDPE, with its flexibility and moisture resistance, is used in packaging films and coatings. - Found in the laboratory in: Opaque bottles and hazardous waste bags (HDPE) or Squeeze bottles and bin liners (LDPE)Recycling symbol for HDPE: #2, LDPE: #4
Polyvinyl Chloride (PVC):
PVC consists of repeating vinyl chloride units (CH2=CHCl). It can exist in different forms, including rigid and flexible varieties, and additives may be incorporated to modify its properties. PVC's versatility allows its use in pipes, window frames, flooring, medical devices, and packaging, where its durability and adaptability to different applications are advantageous.Found in the laboratory in: Fluid bas and Medical tubingsRecycling symbol: #3Polypropylene (PP):
PP is a thermoplastic polymer composed of propylene monomers (CH3-CH=CH2). Its repeating units create a linear chain structure.PP's chemical structure provides it with resilience, flexibility, heat resistance, and chemical inertness, making it ideal for a wide range of applications like packaging, automotive parts, textiles, and household goods.Found in the laboratory in: Pipette tips, Centrifuge tubes, pipette boxesRecycling symbol: #5Polystyrene (PS):
PS is derived from styrene monomers (C6H5CH=CH2), which form a linear polymer chain. PS is employed in various forms like solid PS (used in packaging) and expanded polystyrene (EPS) foam, known for its lightweight, insulation properties, and impact resistance in applications such as packaging and insulation materials.Found in the laboratory in: Cell culture dishes, cell culture flasksRecycling symbol: #6Please note that articles might contain numerous plastic types (such as tip boxes also contain polycarbonate for certain parts) and sometimes other additives that improve functionality. The symbol for other plastics is: #7. Please keep in mind, the numerical symbol differentiate the type of plastics, they do not indicate any recycling quality or range.
Leer más
Leer menos
Recycling
Leer más
Leer menos
Refrigerants (R-series)
Leer más
Leer menos
Renewable Power
Leer más
Leer menos
Shut the Sash
Leer más
Leer menos
Supplier Tiering System
Leer más
Leer menos
Supply Chain
Leer más
Leer menos
Sustainability Report
Leer más
Leer menos
Sustainable Procurement
Leer más
Leer menos
Thermal Power Station
Leer más
Leer menos
Upcycling
Leer más
Leer menos
Waste Management
Leer más
Leer menos
Waste Separation
Leer más
Leer menos
Regulations, Laws & Directive
Aarhus Convention on Access to Information, Public Participation in Decision-making, and Access to Justice in Environmental Matters
Applicable in: European countries and beyond, promoting environmental transparency and public engagement
Leer más
Leer menos
Basel Convention
Leer más
Leer menos
CDP (formerly Carbon Disclosure Project)
Leer más
Leer menos
CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act)
Leer más
Leer menos
Clean Water Act
Leer más
Leer menos
Code of Conduct
Leer más
Leer menos
Ecodesign Directive
Leer más
Leer menos
Electrical and Electronic Equipment Act
Leer más
Leer menos
Emissions Trading Scheme
Leer más
Leer menos
Energy Efficiency Directive (EED)
Leer más
Leer menos
Environmental Impact Assessment (EIA)
Leer más
Leer menos
European Directive 2012/19/EU (WEEE)
Leer más
Leer menos
European Green Deal & EU 2020/852
Leer más
Leer menos
ISO 14000 Series & ISO 14001
Leer más
Leer menos
ISO 9000 Series & ISO 9001
Leer más
Leer menos
Kyoto Protocol
Leer más
Leer menos
Montreal Protocol
Leer más
Leer menos
National Environmental Policy Act (NEPA)
Leer más
Leer menos
National Greenhouse Gas Inventory
Leer más
Leer menos
Paris Agreement (2015)
Leer más
Leer menos
Polluter Pays Principle
Leer más
Leer menos
REACH Regulation
Leer más
Leer menos
Renewable Portfolio Standards (RPS)
Leer más
Leer menos
Resource Conservation and Recovery Act (RCRA - USA)
Leer más
Leer menos
RoHS Directive (EU)
Leer más
Leer menos
Stockholm Convention on Persistent Organic Pollutants (POPs)
Leer más
Leer menos
Supply Chain Duty of Care Law
Leer más
Leer menos
Sustainable Development Goals of the UN (SDG)
Leer más
Leer menos
Taxonomy for Sustainable Activities
Leer más
Leer menos
Toxic Substances Control Act (TSCA - USA)
Leer más
Leer menos
Triple Bottom Line (TBL)
Leer más
Leer menos
UN Paris Agreement/Accord
Leer más
Leer menos
Global Reporting Initiative
Leer más
Leer menos
Certifications
ACT Label
Leer más
Leer menos
Institutions, Organizations & Proprietary Content
DOZN™ Tool
Leer más
Leer menos
Miscellaneous
Artificial/Cultured Meat
Leer más
Leer menos
Q&A
Why can’t all products be made out of recycled materials?
Recycled materials may vary in quality, purity, and composition because chemical properties of once used materials does not equal their virgin counterparts (e.g., chain lengths of plastic polymers). Inconsistencies in these aspects can make it challenging to guarantee the uniformity and reliability of the end product. Reduced strength, durability, or resistance to wear and tear are concerns for many manufactures. Another example is transparency, since recycled materials are often less transparent, observing color changes or properties of samples becomes challenging. Another major reason is that recycling materials can incur higher costs due to the collection, sorting, cleaning, and processing needed to meet quality standards and avoid contamination. Finally, in some cases, technologies are not yet advanced enough to efficiently separate components and are-synthesize those into reusable materials.
Given the missing trust of many scientists, and the making changes to use recycling products only for certain processes requires a big commitment, demand is often limited and thereby making manufacturing less feasible.
Leer más
Leer menos